(Benzylideneacetone)iron tricarbonyl

Summary

(Benzylideneacetone)iron tricarbonyl
(benzylideneacetone)iron-tricarbonyl-2D-skeletal.png
(bda)Fe(CO)3-from-xtal-Mercury-3D-bs1.png
Identifiers
  • 38333-35-6 checkY
3D model (JSmol)
  • Interactive image
ChemSpider
  • 9578311
  • 11403415
  • InChI=1S/C10H10O.3CO.Fe/c1-9(11)7-8-10-5-3-2-4-6-10;3*1-2;/h2-8H,1H3;;;;/b8-7+;;;;
    Key: BVYZFTVCCNDAIM-YZNHWISSSA-N
  • [Fe].[O+]#[C-].[O+]#[C-].[O+]#[C-].O=C(\C=C\c1ccccc1)C
Properties
C13H10FeO4
Molar mass 286.060
Appearance Red solid
Melting point 88 to 89 °C (190 to 192 °F; 361 to 362 K)
slightly soluble
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Infobox references

(Benzylideneacetone)iron tricarbonyl is the organoiron compound with the formula (C6H5CH=CHC(O)CH3)Fe(CO)3. It is a reagent for transferring the Fe(CO)3 unit.[1] This red-colored compound is commonly abbreviated (bda)Fe(CO)3.

Structure and bonding

(bda)Fe(CO)3 is an example of a comnplex of an η2-ketone. It is a piano stool complex. The compound is characterized by IR bands at 2065, 2005, and 1985 cm−1 (cyclohexane solution), the three bands being indicative of the low symmetry of the complex, which is chiral.

Synthesis, reactions, related reagents

Crystals of (Benzylidenacetone)iron tricarbonyl

It is prepared by the reaction of Fe2(CO)9 with benzylideneacetone.[2]

(bda)Fe(CO)3 reacts with Lewis bases to give adducts without displacement of the bda.[3]

Another popular source of Fe(CO)3 is Fe2(CO)9. Alternatively, Fe(CO)3(cyclooctene)2 is highly reactive, the trade-off being that it is thermally sensitive. Imine derivatives of cinnamaldehyde, e.g. C6H5CH=CHC(H)=NC6H5, also form conveniently reactive Fe(CO)3 adducts, which have been shown to be superior in some ways to (bda)Fe(CO)3.[4]

References

  1. ^ Knölker, H.-J. "(η4-Benzylideneacetone)tricarbonyliron" in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York. doi:10.1002/047084289X.
  2. ^ Domingos, A. J. P.; Howell, J. A. S.; Johnson, B. F. G.; Lewis, J. (1990). "Reagents for the Synthesis of η-Diene Complexes of Tricarbonnyliron and Tricarbonylruthenium". Inorg. Synth. 28: 52–55. doi:10.1002/9780470132593.ch11.
  3. ^ Howell, J. A. S.; Kola, J. C.; Dixon, D. T.; Burkinshaw, P. M.; Thomas, M. J. (1984). "The kinetics and mechanism of diene exchange in (η4-enone)Fe(CO)2L complexes (L = phosphine, phosphite)". Journal of Organometallic Chemistry. 266: 83–96. doi:10.1016/0022-328X(84)80113-8.
  4. ^ Knölker, H.-J.; Braier, A.; Bröcher, D. J.; Cämmerer, S. Fröhner, W.; Gonser, P.; Hermann, H.; Herzberg, D.; Reddy, K. R.; Rohde, G. “Recent applications of tricarbonyliron-diene complexes to organic synthesis” Pure and Applied Chemistry 2001, Volume 73, pp. 1075–1086. doi:10.1351/pac200173071075

Further reading

  • Alcock, N. W.; Richards, C. J.; Thomas, S. E. (1991). "Preparation of Tricarbonyl(η4-vinylketene)iron(0) Complexes from Tricarbonyl(ε4-vinyl ketone)iron(0) Complexes and Their Subsequent Conversion to Tricarbonyl(ε4-vinylketenimine)iron(0) Complexes". Organometallics. 10: 231–238. doi:10.1021/om00047a054.CS1 maint: uses authors parameter (link)