10,000,000

Summary

10,000,000 (ten million) is the natural number following 9,999,999 and preceding 10,000,001.

10000000
CardinalTen million
Ordinal10000000th
(ten millionth)
Factorization27 · 57
Greek numeral
Roman numeralX
Greek prefixhebdo-
Binary1001100010010110100000002
Ternary2002110011021013
Octal461132008
Duodecimal342305412
Hexadecimal98968016

In scientific notation, it is written as 107.

In South Asia except for Sri Lanka, it is known as the crore.

In Cyrillic numerals, it is known as the vran (вран - raven).

Selected 8-digit numbers (10,000,001–99,999,999)Edit

10,000,001 to 19,999,999Edit

  • 10,000,019 = smallest 8-digit prime number
  • 10,001,628 = smallest triangular number with 8 digits and the 4,472nd triangular number
  • 10,004,569 = 31632, the smallest 8-digit square
  • 10,077,696 = 2163 = 69, the smallest 8-digit cube
  • 10,556,001 = 32492 = 574
  • 10,609,137 = Leyland number
  • 10,976,184 = logarithmic number[1]
  • 11,111,111 = repunit
  • 11,316,496 = 33642 = 584
  • 11,390,625 = 33752 = 2253 = 156
  • 11,405,773 = Leonardo prime
  • 11,436,171 = Keith number[2]
  • 11,485,154 = Markov number
  • 11,881,376 = 265
  • 11,943,936 = 34562
  • 12,117,361 = 34812 = 594
  • 12,252,240 = highly composite number, smallest number divisible by all the numbers 1 through 18
  • 12,648,430 = hexadecimal C0FFEE, resembling the word "coffee"; used as a placeholder in computer programming, see hexspeak.
  • 12,890,625 = 1-automorphic number[3]
  • 12,960,000 = 36002 = 604 = (3·4·5)4, Plato's "nuptial number" (Republic VIII; see regular number)
  • 12,988,816 = number of different ways of covering an 8-by-8 square with 32 1-by-2 dominoes
  • 13,079,255 = number of free 16-ominoes
  • 13,782,649 = Markov number
  • 13,845,841 = 37212 = 614
  • 14,348,907 = 2433 = 275 = 315
  • 14,352,282 = Leyland number
  • 14,776,336 = 38442 = 624
  • 14,930,352 = Fibonacci number[4]
  • 15,485,863 = 1,000,000th prime number
  • 15,548,694 = Fine number[5]
  • 15,752,961 = 39692 = 634
  • 15,994,428 = Pell number[6]
  • 16,003,008 = 2523
  • 16,609,837 = Markov number
  • 16,733,779 = number of ways to partition {1,2,...,10} and then partition each cell (block) into subcells.[7]
  • 16,777,216 = 40962 = 2563 = 644 = 166 = 88 = 412 = 224hexadecimal "million" (0x1000000), number of possible colors in 24/32-bit Truecolor computer graphics
  • 16,777,792 = Leyland number
  • 16,797,952 = Leyland number
  • 16,964,653 = Markov number
  • 17,016,602 = index of a prime Woodall number
  • 17,210,368 = 285
  • 17,650,828 = 11 + 22 + 33 + 44 + 55 + 66 + 77 + 88
  • 17,850,625 = 42252 = 654
  • 18,199,284 = Motzkin number[8]
  • 18,974,736 = 43562 = 664
  • 19,487,171 = 117
  • 19,680,277 = Wedderburn-Etherington number[9]
  • 19,987,816 = palindromic in 3 consecutive bases: 41AAA1413, 292429214, 1B4C4B115

20,000,000 to 29,999,999Edit

  • 20,031,170 = Markov number
  • 20,151,121 = 44892 = 674
  • 20,511,149 = 295
  • 20,797,002 = number of triangle-free graphs on 13 vertices[10]
  • 21,381,376 = 46242 = 684
  • 21,531,778 = Markov number
  • 21,621,600 = colossally abundant number,[11] superior highly composite number[12]
  • 22,222,222 = repdigit
  • 22,667,121 = 47612 = 694
  • 24,010,000 = 49002 = 704
  • 24,137,569 = 49132 = 2893 = 176
  • 24,157,817 = Fibonacci number,[4] Markov number
  • 24,300,000 = 305
  • 24,678,050 = equal to the sum of the eighth powers of its digits
  • 24,684,612 = 18 + 28 + 38 + 48 + 58 + 68 + 78 + 88 [13]
  • 24,883,200 = superfactorial of 6
  • 25,411,681 = 50412 = 714
  • 26,873,856 = 51842 = 724
  • 27,644,437 = Bell number[14]
  • 28,398,241 = 53292 = 734
  • 28,629,151 = 315
  • 29,986,576 = 54762 = 744

30,000,000 to 39,999,999Edit

  • 31,536,000 = standard number of seconds in a non-leap year (omitting leap seconds)
  • 31,622,400 = standard number of seconds in a leap year (omitting leap seconds)
  • 31,640,625 = 56252 = 754
  • 33,333,333 = repdigit
  • 33,362,176 = 57762 = 764
  • 33,445,755 = Keith number[2]
  • 33,550,336 = fifth perfect number[15]
  • 33,554,432 = 325 = 225, Leyland number, number of directed graphs on 5 labeled nodes[16]
  • 33,555,057 = Leyland number
  • 34,012,224 = 58322 = 3243 = 186
  • 35,153,041 = 59292 = 774
  • 35,831,808 = 127 = 10,000,00012 AKA a dozen-great-great-gross (1012 great-great-grosses)
  • 36,614,981 = alternating factorial[17]
  • 36,926,037 = 3333
  • 37,015,056 = 60842 = 784
  • 37,259,704 = 3343
  • 37,595,375 = 3353
  • 37,933,056 = 3363
  • 38,613,965 = Pell number,[6] Markov number
  • 38,950,081 = 62412 = 794
  • 39,088,169 = Fibonacci number[4]
  • 39,135,393 = 335
  • 39,905,269 = number of square (0,1)-matrices without zero rows and with exactly 8 entries equal to 1[18]
  • 39,916,800 = 11!
  • 39,916,801 = factorial prime[19]

40,000,000 to 49,999,999Edit

  • 40,353,607 = 3433 = 79
  • 40,960,000 = 64002 = 804
  • 43,046,721 = 65612 = 814 = 98 = 316
  • 43,050,817 = Leyland number
  • 43,112,609 = Mersenne prime exponent
  • 43,443,858 = palindromic in 3 consecutive bases: 3C323C315, 296E69216, 1DA2AD117
  • 43,484,701 = Markov number
  • 44,121,607 = Keith number[2]
  • 44,444,444 = repdigit
  • 45,136,576 = Leyland number
  • 45,212,176 = 67242 = 822
  • 45,435,424 = 345
  • 46,026,618 = Wedderburn-Etherington number[9]
  • 46,656,000 = 3603
  • 46,749,427 = number of partially ordered set with 11 unlabeled elements[20]
  • 47,045,881 = 68592 = 3613 = 196
  • 47,326,700 = first number of the first consecutive centuries each consisting wholly of composite numbers[21]
  • 47,326,800 = first number of the first century with the same prime pattern (in this case, no primes) as the previous century[22]
  • 47,458,321 = 68892 = 834
  • 48,024,900 = square triangular number
  • 48,828,125 = 511
  • 48,928,105 = Markov number
  • 48,989,176 = Leyland number
  • 49,787,136 = 70562 = 844

50,000,000 to 59,999,999Edit

  • 50,107,909 = number of free 17-ominoes
  • 50,852,019 = Motzkin number[8]
  • 52,200,625 = 72252 = 854
  • 52,521,875 = 355
  • 54,700,816 = 73962 = 864
  • 55,555,555 = repdigit
  • 57,048,048 = Fine number[23]
  • 57,289,761 = 75692 = 874
  • 57,885,161 = Mersenne prime exponent
  • 59,969,536 = 77442 = 884

60,000,000 to 69,999,999Edit

  • 60,466,176 = 77762 = 365 = 610
  • 61,466,176 = Leyland number
  • 62,742,241 = 79212 = 894
  • 62,748,517 = 137
  • 63,245,986 = Fibonacci number, Markov number
  • 64,000,000 = 80002 = 4003 = 206vigesimal "million" (1 alau in Mayan, 1 poaltzonxiquipilli in Nahuatl)
  • 65,610,000 = 81002 = 904
  • 66,600,049 = Largest minimal prime in base 10
  • 66,666,666 = repdigit
  • 67,108,864 = 81922 = 413 = 226
  • 67,109,540 = Leyland number
  • 67,137,425 = Leyland number
  • 68,041,019 – number of parallelogram polyominoes with 23 cells.[24]
  • 68,574,961 = 82812 = 914
  • 69,343,957 = 375

70,000,000 to 79,999,999Edit

  • 71,639,296 = 84642 = 924
  • 72,546,283 = the smallest prime number preceded and followed by prime gaps of over 100[25][26]
  • 73,939,133 = the largest prime number that can be 'tailed' again and again by removing its last digit to produce only primes
  • 74,207,281 = Mersenne prime exponent
  • 74,805,201 = 86492 = 934
  • 77,232,917 = Mersenne prime exponent
  • 77,777,777 = repdigit
  • 78,074,896 = 88362 = 944
  • 78,442,645 = Markov number
  • 79,235,168 = 385

80,000,000 to 89,999,999Edit

90,000,000 to 99,999,999Edit

  • 90,224,199 = 395
  • 92,236,816 = 96042 = 984
  • 93,222,358 = Pell number[6]
  • 93,554,688 = 2-automorphic number[28]
  • 94,109,401 = square pentagonal number
  • 94,418,953 = Markov prime
  • 96,059,601 = 98012 = 994
  • 99,897,344 = 4643, the largest 8-digit cube
  • 99,980,001 = 99992, the largest 8-digit square
  • 99,990,001 = unique prime[29]
  • 99,991,011 = largest triangular number with 8 digits and the 14,141st triangular number
  • 99,999,989 = greatest prime number with 8 digits[30]
  • 99,999,999 = repdigit, Friedman number, believed to be smallest number to be both repdigit and Friedman

See alsoEdit

ReferencesEdit

  1. ^ Sloane, N. J. A. (ed.). "Sequence A002104 (Logarithmic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ a b c "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  3. ^ a b Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-04-06.
  4. ^ a b c "Sloane's A000045 : Fibonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A000957". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-01.
  6. ^ a b c "Sloane's A000129 : Pell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  7. ^ Sloane, N. J. A. (ed.). "Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^ a b "Sloane's A001006 : Motzkin numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  9. ^ a b "Sloane's A001190 : Wedderburn-Etherington numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  10. ^ Sloane, N. J. A. (ed.). "Sequence A006785 (Number of triangle-free graphs on n vertices)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. ^ "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  12. ^ "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  13. ^ Sloane, N. J. A. (ed.). "Sequence A031971". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  14. ^ "Sloane's A000110 : Bell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  15. ^ "Sloane's A000396 : Perfect numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  16. ^ Sloane, N. J. A. (ed.). "Sequence A002416". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. ^ "Sloane's A005165 : Alternating factorials". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  18. ^ Sloane, N. J. A. (ed.). "Sequence A122400 (Number of square (0,1)-matrices without zero rows and with exactly n entries equal to 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  19. ^ "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  20. ^ Sloane, N. J. A. (ed.). "Sequence A000112 (Number of partially ordered sets (posets) with n unlabeled elements)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  21. ^ Sloane, N. J. A. (ed.). "Sequence A181098 (Primefree centuries (i.e., no prime exists between 100*n and 100*n+99))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-30.
  22. ^ Sloane, N. J. A. (ed.). "Sequence A219996 (Centuries whose prime pattern is the same as prime pattern in the previous century)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-30.
  23. ^ Sloane, N. J. A. (ed.). "Sequence A000957". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-01.
  24. ^ Sloane, N. J. A. (ed.). "Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  25. ^ Sloane, N. J. A. (ed.). "Sequence A023188 (Lonely (or isolated) primes: least prime of distance n from nearest prime (n = 1 or even).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-01-27.
  26. ^ Sloane, N. J. A. (ed.). "Sequence A138058 (Prime numbers, isolated from neighboring primes by ± 100 (or more).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-07-03.
  27. ^ "Sloane's A011541 : Taxicab, taxi-cab or Hardy-Ramanujan numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  28. ^ Sloane, N. J. A. (ed.). "Sequence A030984 (2-automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-01.
  29. ^ Sloane, N. J. A. (ed.). "Sequence A040017 (Unique period primes (no other prime has same period as 1/p) in order (periods are given in A051627))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  30. ^ "greatest prime number with 8 digits". Wolfram Alpha. Retrieved June 4, 2014.