10-simplex

Summary

Regular hendecaxennon
(10-simplex)

Orthogonal projection
inside Petrie polygon
Type Regular 10-polytope
Family simplex
Schläfli symbol {3,3,3,3,3,3,3,3,3}
Coxeter-Dynkin diagram
9-faces 11 9-simplex
8-faces 55 8-simplex
7-faces 165 7-simplex
6-faces 330 6-simplex
5-faces 462 5-simplex
4-faces 462 5-cell
Cells 330 tetrahedron
Faces 165 triangle
Edges 55
Vertices 11
Vertex figure 9-simplex
Petrie polygon hendecagon
Coxeter group A10 [3,3,3,3,3,3,3,3,3]
Dual Self-dual
Properties convex

In geometry, a 10-simplex is a self-dual regular 10-polytope. It has 11 vertices, 55 edges, 165 triangle faces, 330 tetrahedral cells, 462 5-cell 4-faces, 462 5-simplex 5-faces, 330 6-simplex 6-faces, 165 7-simplex 7-faces, 55 8-simplex 8-faces, and 11 9-simplex 9-faces. Its dihedral angle is cos−1(1/10), or approximately 84.26°.

It can also be called a hendecaxennon, or hendeca-10-tope, as an 11-facetted polytope in 10-dimensions. The name hendecaxennon is derived from hendeca for 11 facets in Greek and -xenn (variation of ennea for nine), having 9-dimensional facets, and -on.

Coordinates

edit

The Cartesian coordinates of the vertices of an origin-centered regular 10-simplex having edge length 2 are:

 
 
 
 
 
 
 
 
 
 

More simply, the vertices of the 10-simplex can be positioned in 11-space as permutations of (0,0,0,0,0,0,0,0,0,0,1). This construction is based on facets of the 11-orthoplex.

Images

edit
orthographic projections
Ak Coxeter plane A10 A9 A8
Graph      
Dihedral symmetry [11] [10] [9]
Ak Coxeter plane A7 A6 A5
Graph      
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph      
Dihedral symmetry [5] [4] [3]
edit

The 2-skeleton of the 10-simplex is topologically related to the 11-cell abstract regular polychoron which has the same 11 vertices, 55 edges, but only 1/3 the faces (55).

References

edit
  • Coxeter, H.S.M.:
    • — (1973). "Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)". Regular Polytopes (3rd ed.). Dover. pp. 296. ISBN 0-486-61480-8.
    • Sherk, F. Arthur; McMullen, Peter; Thompson, Anthony C.; Weiss, Asia Ivic, eds. (1995). Kaleidoscopes: Selected Writings of H.S.M. Coxeter. Wiley. ISBN 978-0-471-01003-6.
      • (Paper 22) — (1940). "Regular and Semi Regular Polytopes I". Math. Zeit. 46: 380–407. doi:10.1007/BF01181449. ISBN 9780471010036. S2CID 186237114.
      • (Paper 23) — (1985). "Regular and Semi-Regular Polytopes II". Math. Zeit. 188 (4): 559–591. doi:10.1007/BF01161657. S2CID 120429557.
      • (Paper 24) — (1988). "Regular and Semi-Regular Polytopes III". Math. Zeit. 200: 3–45. doi:10.1007/BF01161745. S2CID 186237142.
  • Conway, John H.; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). "26. Hemicubes: 1n1". The Symmetries of Things. p. 409. ISBN 978-1-56881-220-5.
  • Johnson, Norman (1991). Uniform Polytopes (Manuscript).
    • Johnson, N.W. (1966). The Theory of Uniform Polytopes and Honeycombs (PhD). University of Toronto. OCLC 258527038.
  • Klitzing, Richard. "10D uniform polytopes (polyxenna) x3o3o3o3o3o3o3o3o3o — ux".
edit
  • Glossary for hyperspace, George Olshevsky.
  • Polytopes of Various Dimensions
  • Multi-dimensional Glossary
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds