BREAKING NEWS
8-simplex

## Summary

Regular enneazetton
(8-simplex)

Orthogonal projection
inside Petrie polygon
Type Regular 8-polytope
Family simplex
Schläfli symbol {3,3,3,3,3,3,3}
Coxeter-Dynkin diagram
7-faces 9 7-simplex
6-faces 36 6-simplex
5-faces 84 5-simplex
4-faces 126 5-cell
Cells 126 tetrahedron
Faces 84 triangle
Edges 36
Vertices 9
Vertex figure 7-simplex
Petrie polygon enneagon
Coxeter group A8 [3,3,3,3,3,3,3]
Dual Self-dual
Properties convex

In geometry, an 8-simplex is a self-dual regular 8-polytope. It has 9 vertices, 36 edges, 84 triangle faces, 126 tetrahedral cells, 126 5-cell 4-faces, 84 5-simplex 5-faces, 36 6-simplex 6-faces, and 9 7-simplex 7-faces. Its dihedral angle is cos−1(1/8), or approximately 82.82°.

It can also be called an enneazetton, or ennea-8-tope, as a 9-facetted polytope in eight-dimensions. The name enneazetton is derived from ennea for nine facets in Greek and -zetta for having seven-dimensional facets, and -on.

## As a configuration

This configuration matrix represents the 8-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces, 6-faces and 7-faces. The diagonal numbers say how many of each element occur in the whole 8-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation.[1][2]

${\displaystyle {\begin{bmatrix}{\begin{matrix}9&8&28&56&70&56&28&8\\2&36&7&21&35&35&21&7\\3&3&84&6&15&20&15&6\\4&6&4&126&5&10&10&5\\5&10&10&5&126&4&6&4\\6&15&20&15&6&84&3&3\\7&21&35&35&21&7&36&2\\8&28&56&70&56&28&8&9\end{matrix}}\end{bmatrix}}}$

## Coordinates

The Cartesian coordinates of the vertices of an origin-centered regular enneazetton having edge length 2 are:

${\displaystyle \left(1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ {\sqrt {1/6}},\ {\sqrt {1/3}},\ \pm 1\right)}$
${\displaystyle \left(1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ {\sqrt {1/6}},\ -2{\sqrt {1/3}},\ 0\right)}$
${\displaystyle \left(1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ -{\sqrt {3/2}},\ 0,\ 0\right)}$
${\displaystyle \left(1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ -2{\sqrt {2/5}},\ 0,\ 0,\ 0\right)}$
${\displaystyle \left(1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ -{\sqrt {5/3}},\ 0,\ 0,\ 0,\ 0\right)}$
${\displaystyle \left(1/6,\ {\sqrt {1/28}},\ -{\sqrt {12/7}},\ 0,\ 0,\ 0,\ 0,\ 0\right)}$
${\displaystyle \left(1/6,\ -{\sqrt {7/4}},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)}$
${\displaystyle \left(-4/3,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)}$

More simply, the vertices of the 8-simplex can be positioned in 9-space as permutations of (0,0,0,0,0,0,0,0,1). This construction is based on facets of the 9-orthoplex.

Another origin-centered construction uses (1,1,1,1,1,1,1,1)/3 and permutations of (1,1,1,1,1,1,1,-11)/12 for edge length √2.

## Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph
Dihedral symmetry [9] [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

## Related polytopes and honeycombs

This polytope is a facet in the uniform tessellations: 251, and 521 with respective Coxeter-Dynkin diagrams:

,

This polytope is one of 135 uniform 8-polytopes with A8 symmetry.

A8 polytopes

t0
t1

t2

t3

t01

t02

t12

t03

t13

t23

t04

t14

t24

t34

t05

t15

t25

t06

t16

t07

t012

t013

t023

t123

t014

t024

t124

t034

t134

t234

t015

t025

t125

t035

t135

t235

t045

t145

t016

t026

t126

t036

t136

t046

t056

t017

t027

t037

t0123

t0124

t0134

t0234

t1234

t0125

t0135

t0235

t1235

t0145

t0245

t1245

t0345

t1345

t2345

t0126

t0136

t0236

t1236

t0146

t0246

t1246

t0346

t1346

t0156

t0256

t1256

t0356

t0456

t0127

t0137

t0237

t0147

t0247

t0347

t0157

t0257

t0167

t01234

t01235

t01245

t01345

t02345

t12345

t01236

t01246

t01346

t02346

t12346

t01256

t01356

t02356

t12356

t01456

t02456

t03456

t01237

t01247

t01347

t02347

t01257

t01357

t02357

t01457

t01267

t01367

t012345

t012346

t012356

t012456

t013456

t023456

t123456

t012347

t012357

t012457

t013457

t023457

t012367

t012467

t013467

t012567

t0123456

t0123457

t0123467

t0123567

t01234567

## References

1. ^ Coxeter 1973, §1.8 Configurations
2. ^ Coxeter, H.S.M. (1991). Regular Complex Polytopes (2nd ed.). Cambridge University Press. p. 117. ISBN 9780521394901.
• Coxeter, H.S.M.:
• — (1973). "Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)". Regular Polytopes (3rd ed.). Dover. pp. 296. ISBN 0-486-61480-8.
• Sherk, F. Arthur; McMullen, Peter; Thompson, Anthony C.; Weiss, Asia Ivic, eds. (1995). Kaleidoscopes: Selected Writings of H.S.M. Coxeter. Wiley. ISBN 978-0-471-01003-6.
• (Paper 22) — (1940). "Regular and Semi Regular Polytopes I". Math. Zeit. 46: 380–407. doi:10.1007/BF01181449. S2CID 186237114.
• (Paper 23) — (1985). "Regular and Semi-Regular Polytopes II". Math. Zeit. 188 (4): 559–591. doi:10.1007/BF01161657. S2CID 120429557.
• (Paper 24) — (1988). "Regular and Semi-Regular Polytopes III". Math. Zeit. 200: 3–45. doi:10.1007/BF01161745. S2CID 186237142.
• Conway, John H.; Burgiel, Heidi; Goodman-Strass, Chaim (2008). "26. Hemicubes: 1n1". The Symmetries of Things. p. 409. ISBN 978-1-56881-220-5.
• Johnson, Norman (1991). "Uniform Polytopes" (Manuscript). {{cite journal}}: Cite journal requires |journal= (help)
• Johnson, N.W. (1966). The Theory of Uniform Polytopes and Honeycombs (PhD). University of Toronto. OCLC 258527038.
• Klitzing, Richard. "8D uniform polytopes (polyzetta) x3o3o3o3o3o3o3o — ene".