Additive function

Summary

In number theory, an additive function is an arithmetic function f(n) of the positive integer variable n such that whenever a and b are coprime, the function applied to the product ab is the sum of the values of the function applied to a and b:[1]

Completely additive edit

An additive function f(n) is said to be completely additive if   holds for all positive integers a and b, even when they are not coprime. Totally additive is also used in this sense by analogy with totally multiplicative functions. If f is a completely additive function then f(1) = 0.

Every completely additive function is additive, but not vice versa.

Examples edit

Examples of arithmetic functions which are completely additive are:

  • The restriction of the logarithmic function to  
  • The multiplicity of a prime factor p in n, that is the largest exponent m for which pm divides n.
  • a0(n) – the sum of primes dividing n counting multiplicity, sometimes called sopfr(n), the potency of n or the integer logarithm of n (sequence A001414 in the OEIS). For example:
a0(4) = 2 + 2 = 4
a0(20) = a0(22 · 5) = 2 + 2 + 5 = 9
a0(27) = 3 + 3 + 3 = 9
a0(144) = a0(24 · 32) = a0(24) + a0(32) = 8 + 6 = 14
a0(2000) = a0(24 · 53) = a0(24) + a0(53) = 8 + 15 = 23
a0(2003) = 2003
a0(54,032,858,972,279) = 1240658
a0(54,032,858,972,302) = 1780417
a0(20,802,650,704,327,415) = 1240681
  • The function Ω(n), defined as the total number of prime factors of n, counting multiple factors multiple times, sometimes called the "Big Omega function" (sequence A001222 in the OEIS). For example;
Ω(1) = 0, since 1 has no prime factors
Ω(4) = 2
Ω(16) = Ω(2·2·2·2) = 4
Ω(20) = Ω(2·2·5) = 3
Ω(27) = Ω(3·3·3) = 3
Ω(144) = Ω(24 · 32) = Ω(24) + Ω(32) = 4 + 2 = 6
Ω(2000) = Ω(24 · 53) = Ω(24) + Ω(53) = 4 + 3 = 7
Ω(2001) = 3
Ω(2002) = 4
Ω(2003) = 1
Ω(54,032,858,972,279) = Ω(11 ⋅ 19932 ⋅ 1236661) = 4  ;
Ω(54,032,858,972,302) = Ω(2 ⋅ 72 ⋅ 149 ⋅ 2081 ⋅ 1778171) = 6
Ω(20,802,650,704,327,415) = Ω(5 ⋅ 7 ⋅ 112 ⋅ 19932 ⋅ 1236661) = 7.

Examples of arithmetic functions which are additive but not completely additive are:

ω(4) = 1
ω(16) = ω(24) = 1
ω(20) = ω(22 · 5) = 2
ω(27) = ω(33) = 1
ω(144) = ω(24 · 32) = ω(24) + ω(32) = 1 + 1 = 2
ω(2000) = ω(24 · 53) = ω(24) + ω(53) = 1 + 1 = 2
ω(2001) = 3
ω(2002) = 4
ω(2003) = 1
ω(54,032,858,972,279) = 3
ω(54,032,858,972,302) = 5
ω(20,802,650,704,327,415) = 5
  • a1(n) – the sum of the distinct primes dividing n, sometimes called sopf(n) (sequence A008472 in the OEIS). For example:
a1(1) = 0
a1(4) = 2
a1(20) = 2 + 5 = 7
a1(27) = 3
a1(144) = a1(24 · 32) = a1(24) + a1(32) = 2 + 3 = 5
a1(2000) = a1(24 · 53) = a1(24) + a1(53) = 2 + 5 = 7
a1(2001) = 55
a1(2002) = 33
a1(2003) = 2003
a1(54,032,858,972,279) = 1238665
a1(54,032,858,972,302) = 1780410
a1(20,802,650,704,327,415) = 1238677

Multiplicative functions edit

From any additive function   it is possible to create a related multiplicative function   which is a function with the property that whenever   and   are coprime then:

 
One such example is  

Summatory functions edit

Given an additive function  , let its summatory function be defined by  . The average of   is given exactly as

 

The summatory functions over   can be expanded as   where

 

The average of the function   is also expressed by these functions as

 

There is always an absolute constant   such that for all natural numbers  ,

 

Let

 

Suppose that   is an additive function with   such that as  ,

 

Then   where   is the Gaussian distribution function

 

Examples of this result related to the prime omega function and the numbers of prime divisors of shifted primes include the following for fixed   where the relations hold for  :

 
 

See also edit

References edit

  1. ^ Erdös, P., and M. Kac. On the Gaussian Law of Errors in the Theory of Additive Functions. Proc Natl Acad Sci USA. 1939 April; 25(4): 206–207. online

Further reading edit

  • Janko Bračič, Kolobar aritmetičnih funkcij (Ring of arithmetical functions), (Obzornik mat, fiz. 49 (2002) 4, pp. 97–108) (MSC (2000) 11A25)
  • Iwaniec and Kowalski, Analytic number theory, AMS (2004).