Angara (rocket family)


Первый испытательный пуск ракеты-носителя тяжелого класса «Ангара-А5» 03
Launch of Angara A5
FunctionLaunch vehicle
ManufacturerKhrunichev, KBKhA
Country of originRussia
Cost per launchAngara A5: US$90 - 105 million (2016) [1][2] 5 billion roubles (US$ ~70 million) (2020) [3]
Height42.7 m (140 ft) - 64 m (210 ft)
WidthAngara 1.2 2.9 m (9 ft 6 in)
Angara A5 8.86 m (29.1 ft)
Mass171,500 kg (378,100 lb) - 790,000 kg (1,740,000 lb)
Payload to LEO (Plesetsk)
Mass3,800 kg (8,400 lb) - 24,500 kg (54,000 lb)
Payload to GTO (Plesetsk)
Mass5,400 kg (11,900 lb) - 7,500 kg (16,500 lb)
Associated rockets
ComparableNaro-1 used a modified URM-1 first stage
Launch history
Launch sitesPlesetsk, Site 35
Total launches3 (A1.2PP: 1, A5: 2)
Success(es)3 (A1.2PP: 1, A5: 2)
First flightA1.2PP: 9 July 2014
A5: 23 December 2014
Last flightA5: 14 December 2020
Boosters (A5) – URM-1
No. boosters4 (see text)
Engines1 RD-191
Thrust1,920 kN (430,000 lbf) (Sea level)
Total thrust7,680 kN (1,730,000 lbf) (Sea level)
Specific impulse310.7 s (3.047 km/s) (Sea level)
Burn time214 seconds
First stage – URM-1
Engines1 RD-191
Thrust1,920 kN (430,000 lbf) (Sea level)
Specific impulse310.7 s (3.047 km/s) (Sea level)
Burn timeAngara 1.2: 214 seconds
Angara A5: 325 seconds
Second stage – URM-2
Engines1 RD-0124A
Thrust294.3 kN (66,200 lbf)
Specific impulse359 s (3.52 km/s)
Burn timeAngara A5: 424 seconds
Third stage (A5) – Briz-M (optional)
Engines1 S5.98M
Thrust19.6 kN (4,400 lbf)
Specific impulse326 s (3.20 km/s)
Burn time3,000 seconds
Third stage (A5) – KVTK (optional, under development)
Engines1 RD-0146D
Thrust68.6 kN (15,400 lbf)
Specific impulse463 s (4.54 km/s)
Burn time1,350 seconds

The Angara rocket family is a family of space-launch vehicles being developed by the Moscow-based Khrunichev State Research and Production Space Center. The rockets are to put between 3,800 and 24,500 kg into low Earth orbit and are intended, along with Soyuz-2 variants, to replace several existing launch vehicles.


After the dissolution of the Soviet Union, many formerly Soviet launch vehicles were built in or required components from companies now located in Ukraine, such as Yuzhnoye Design Bureau, which produced Zenit-2, and Yuzhmash, which produced Dnepr and Tsyklon.[4] Additionally, the Soviet Union's main spaceport, Baikonur Cosmodrome, was located in Kazakhstan, and Russia encountered difficulties negotiating for its use.[5] This led to the decision in 1992 to develop a new entirely Russian launch vehicle, named Angara, to replace the rockets now built outside of the country, and ensure Russian access to space without Baikonur. It was decided that this vehicle should ideally use the partially completed Zenit-2 launch pad at the Russian Plesetsk Cosmodrome,[6] and be able to launch military satellites into geosynchronous orbit, which Proton could not due to lack of a launch pad at Plesetsk Cosmodrome. Several companies submitted bids for the new rocket, and in 1994 Khrunichev, the developer of Proton, was selected as the winner. The commercial success of Proton over the next two decades would be an advantage to Khrunichev, as the Angara project immediately ran into funding difficulties from the cash-strapped Russian government.[7]

Khrunichev's initial design called for the use of a modified RD-170 for first stage propulsion and a liquid hydrogen powered second stage. By 1997, the hydrogen-powered second stage had been abandoned in favor of kerosene, and the RD-170 was replaced with a modular design which would be powered by the new RD-191, a one-chamber engine derived from the four-chamber RD-170. In late 1997, Khrunichev was given approval from the Russian government to proceed with their new design, which would both be able to replace the ICBM-based Dnepr, Tsyklon, and Rokot with its smaller variants, as well as be able to launch satellites into geostationary orbit from Plesetsk with the Proton-class Angara A5.[8] This new modular rocket would require construction of a new launch pad.

By 2004, the design of Angara had taken shape and the project proceeded with development of the launchers. In 2008, NPO Energomash, the builder of the RD-191, reported that the engine had completed development and burn tests and was ready for manufacturing and delivery,[9] and in January 2009 the first completed Angara first stage was delivered to Khrunichev.[10] The next year Vladimir Nesterov, Director-General of Khrunichev, announced that the first flight test of Angara would be scheduled for 2013,[11] and in 2013 the first prototype Angara rocket arrived in Plesetsk.[12]

In 2014, 22 years after Angara's original conception, the first launch took place on 9 July 2014, an Angara 1.2PP suborbital test flight from the northern Plesetsk Cosmodrome.[13][14][15] On 23 December 2014, Angara A5's first test flight was performed, launching it into geosynchronous orbit.[16] In June 2020, it was reported that the first Angara Launching Pad was completed and would be transported to Vostochny Cosmodrome.[17]

On 14 December 2020, 6 years after the first test flight, Angara-A5's second test flight took place from Plesetsk.[18] According to Roscosmos chief Dmitriy Rogozin, two more Angara launches are coming in 2021: an Angara-1.2 and an Angara-A5 with a new booster, Persei.[19]

Vehicle description

Angara mock-ups at the MAKS 2009 airshow near Moscow

URM-1: first stage and boosters

The Universal Rocket Module (URM-1) forms the core of every Angara vehicle. In the Angara A5, four additional URM-1s act as boosters. Each URM-1 is powered by a single NPO Energomash RD-191 burning liquid oxygen and RP-1 (kerosene).[20]

The RD-191 is a single-chamber engine derived from the four-chamber RD-170, originally developed for the boosters powering the Energia launch vehicle. Zenit's four-chamber RD-171 and the dual-chamber RD-180 powering ULA's Atlas V are also derivatives of the RD-170, as is the RD-193 proposed as a replacement for the 1970s-era NK-33 powering the first stage of the Soyuz 2-1v. The RD-191 is capable of throttling down to at least 30%, allowing core URM-1 stages to conserve propellant until booster URM-1 separation.[21]

The URM-1 consists of a liquid oxygen tank at the top, followed by an intertank structure containing flight control and telemetry equipment, with the kerosene tank below that. At the base of the module is a propulsion bay containing engine gimballing equipment for vehicle pitch and yaw and thrusters for roll control.[22]

URM-2: second stage

The second stage of the Angara, designated URM-2, uses one KBKhA RD-0124A engine also burning liquid oxygen and kerosene. The RD-0124A is nearly identical to the RD-0124 currently powering the second stage of Soyuz-2, designated Block I. The URM-2 has a diameter of 3.6 meters for the Angara A5 and other proposed variants. The Angara 1.2 will fly a smaller RD-0124A-powered second stage, which may be 2.66 meters to maintain commonality with Block I[23] or stretched to 2.9 meters to maintain a consistent diameter with URM-1.[24]

Upper stages

Angara 1.2 will not use an upper stage, nor will Angara A5 when delivering payloads to low orbits.[20] For higher energy orbits such as GTO, Angara A5 will use the Briz-M upper stage (currently used for the Proton-M rocket), powered by one S5.98M burning N
and UDMH, or eventually a new cryogenic upper stage, the KVTK. This stage will use the LH2/LOX powered RD-0146D and allow Angara A5 to bring up to two tonnes more mass to GTO.[20] The Blok D is being considered as an upper stage when launched from Vostochny since it will avoid the toxic propellant of the Briz-M.[25]


The Angara rocket family, from the 1.1 to the A7.

Angara 1.2

The smallest Angara under development is the Angara 1.2, which consists of one URM-1 core and a modified Block I second stage. It has a lift-off mass of 171 tonnes and can deliver 3.8 tonnes of payload to a 200 km x 60° orbit.[23][26]

Angara 1.2pp

A modified Angara 1.2, called Angara 1.2pp (Angara-1.2 pervyy polyot, meaning Angara-1.2 first flight), made Angara's inaugural suborbital flight on 9 July 2014. This flight lasted 22 minutes and carried a mass simulator weighing 1,430 kg (3,150 lb).[27] Angara 1.2PP weighed 171,000 kg (377,000 lb) and consisted of a URM-1 core stage and a partially fueled 3.6 m (12 ft)-diameter URM-2, allowing each of the major components of Angara A5 to be flight tested before that version's first orbital launch, conducted on 23 December 2014.[16]

Angara A5

The second Angara developed was the Angara A5 heavy lift launch vehicle, which consists of one URM-1 core and four URM-1 boosters, a 3.6m URM-2 second stage, and an upper stage, either the Briz-M or the KVTK.[20] Weighing 773 tonnes at lift-off, Angara A5 has a payload capacity of 24.5 tonnes to a 200 km x 60° orbit. Angara A5 is able to deliver 5.4 tonnes to GTO with Briz-M, or 7.5 tonnes to the same orbit with KVTK.[26]

In the Angara A5, the four URM-1s used as boosters operate at full thrust for approximately 214 seconds, then separate. The URM-1 forming the vehicle's core is operated at full thrust for lift off, then throttled down to 30% to conserve propellant. The core is throttled back up after the boosters have separated and continues burning for another 110 seconds.[21]

The first Angara A5 test flight was launched on 23 December 2014. The second test flight was launched on 14 December 2020 from Plesetsk.[28]

Proposed versions

Angara 1.1

Initial plans called for an even smaller Angara 1.1 using a Briz-KM as a second stage, with a payload capacity of 2 tonnes. This version was cancelled as it fell into the same payload class as the Soyuz 2-1v, which made its debut flight in 2013.[23]

Angara A3

The Angara A3 would consist of one URM-1 core, two URM-1 boosters, the 3.6m URM-2, and an optional Briz-M or hydrogen powered upper stage for high energy orbits. The hydrogen powered stage for this vehicle, called RCAF would be smaller than the Angara A5's KVTK. This vehicle has no current plans for use (14.6 tonnes to 200 km x 60°, 2.4 tonnes to GTO with Briz-M or 3.6 tonnes with a hydrogen upper stage),[26] but could be developed as a replacement for Zenit.[29]

Angara A5P


Khrunichev has proposed an Angara A5 capable of launching a new crewed spacecraft weighing up to 18 tonnes: the Angara 5P. This version would have 4 URM-1s as boosters surrounding a sustainer core URM-1 but lack a second stage, relying on the spacecraft to complete orbital insertion from a slightly suborbital trajectory, much like the Buran or Space Shuttle. This has the advantage of allowing all engines to be lit and checked out while on the ground, eliminating the possibility of an engine failing to start after staging. The RD-191 engines may also be operated at reduced thrust to improve safety.[7][30]

Angara A5V

Khrunichev has proposed an upgraded Angara A5 variant with a new big hydrogen-based upper stage (URM-2V) as replacement for URM-2 and upgraded engine thrust on the URM-1 stages. The thrust up the URM-1 boosters would be 10% higher during the first 40 seconds to allow good thrust/weight ratio even with the URM-2 replaced with the heavier URM-2V. Cross-feed and even more powerful RD-195 engines for the URM-1 are also considered. The capacity of A5V is supposed to be around 35-40 tonnes to LEO depending on final configuration.[31]

Angara A7

Proposals exist for a heavier Angara A7, weighing 1133 tonnes and capable of putting 35 tonnes into a 200 km x 60° orbit, or delivering 12.5 tonnes to GTO with an enlarged KVTK-A7 as a second stage in place of the URM-2.[26] There are no current plans to develop this vehicle as it would require a larger core URM-1 to carry more propellant and would have to await the development of the hydrogen powered engine for KVTK. The Angara A7 would also require a different launch pad.[32][33]


The Angara-100 was a 2005 proposal by Khrunichev to build a heavy-lift launch vehicle for NASA's Vision for Space Exploration. The rocket would consist of four RD-170-powered boosters, an RD-180-powered core stage, and a cryogenic upper stage using a modified Energia RD-0120 engine, the RD-0122. Its payload capacity to LEO would be in excess of 100 tons.[34]


Together with NPO Molniya, Khrunichev has also proposed a reusable URM-1 booster named Baikal. The URM-1 would be fitted with a wing, an empennage, a landing gear, a return flight engine and attitude control thrusters, to enable the rocket booster to return to an airfield after completing its mission.[35]



Version Angara 1.2 Angara A5
Booster N/A 4 x URM-1
First stage 1 x URM-1 1 x URM-1
Second stage Modified Block I URM-2
Third stage (not used for LEO) Briz-M/Blok DM-03/KVTK [36]
Thrust (at sea level) 1.92 MN 9.61 MN
Launch weight 171.5 t 759 t
Height (maximal) 41.5 m 55.4 m
Payload (LEO 200 km) 3.8 t 24.5 t
Payload (GTO) 5.4/7.5 t
Payload (GEO) 3/4.6 t

Cancelled or proposed

Version Angara 1.1


Angara A3


Angara A5P


Angara A5V


Angara A7


Angara A7.2B

(Proposed) [37]

Boosters N/A 2 x URM-1 4 x URM-1 4 x URM-1 6 x URM-1 6 x URM-1
First stage 1 x URM-1 1 x URM-1 1 x URM-1 1 x URM-1 1 x URM-1 1 x URM-1
Second stage Briz-KM Modified Block I URM-2V KVTK-A7 [36] URM-2
Third stage (not used for LEO) Briz-M/RCAF [36] - Blok DM-03/KVTK - KVTK2-А7В
Thrust (at sea level) 1.92 MN 5.77 MN 9.61 MN 10.57 MN 13.44 MN
Launch weight 149 t 481 t 713 t 815 - 821 t 1133 t 1323 t
Height (maximal) 34.9 m 45.8 m ? ? ? 65,7 m
Payload (LEO 200 km) 2.0 t 14.6 t 18.0 t 35 - 40 t 35 t 50 t
Payload (GTO) 2.4/3.6 t 11.9 - 13.3 t 12.5 t 19 t
Payload (GEO) 1.0/2.0 t 7.2 - 8 t 7.6 t 11.4 t

Testing and manufacturing

The production of the Universal Rocket Modules and the Briz-M upper stages will take place at the Khrunichev subsidiary Production Corporation Polyot in Omsk. In 2009, Polyot invested over 771.4 million RUB (about US$25 million) in Angara production lines.[7] Design and testing of the RD-191 engine was done by NPO Energomash, while its mass production will take place at the company Proton-PM in Perm.[7]



Angara will primarily be launched from the Plesetsk Cosmodrome. Beginning in 2020, plans call for it to also be launched from the Vostochny Cosmodrome.[38] This would allow the phase out of Proton, a rocket whose operation at Baikonur Cosmodrome, Kazakhstan has been objected to due to its use of large amounts of highly toxic UDMH and N
and reliability issues.[39]

Launch history

Date/Time (UTC) Configuration Serial number Launch pad Outcome
Payload Separation orbit Operator Function
9 July 2014
Angara 1.2PP 71601 Plesetsk Cosmodrome, Site 35 Success
1,430 kg (3,150 lb) mass simulator[27] Suborbital Roscosmos Suborbital test flight
Non-standard Angara 1.2PP allowed flight testing of both URM-1 and URM-2
23 December 2014
Angara A5/Briz-M 71751 Plesetsk Cosmodrome, Site 35 Success
2,000 kg (4,400 lb) mass simulator Low Earth orbit [16] Roscosmos Orbital test flight No.1
Maiden flight of Angara A5, mass simulator intentionally not separated from Briz-M upper stage[40]
14 December 2020
05:50 [28]
Angara A5/Briz-M 71752 Plesetsk Cosmodrome, Site 35 Success
2,400 kg (5,300 lb) mass simulator Geosynchronus Roscosmos Orbital test flight No.2
Second orbital test flight

Future Launches

NET April 2021 Angara A5 / DM-03 Plesetsk Cosmodrome, Site 35 TBD
Luch-5M Geosynchronous Roscosmos Communications
Third orbital flight
NET July 2021 Angara A5 Plesetsk Cosmodrome, Site 35 TBD
Ekspress-AMU Geostationary RSCC Communications
Fourth orbital flight
NET October 2021 Angara 1.2 Plesetsk Cosmodrome, Site 35 TBD
KOMPSAT-6 LEO Korea Aerospace Research Institute SAR Earth observation
Maiden and first commercial flight of Angara A1.2.
NET 2022 Angara 1.2 Plesetsk Cosmodrome, Area 35 Start 1 TBD
Gonets-M 17, Gonets-M 18, Gonets-M 19 LEO Gonets SatCom Communications
NET 2022 Angara 1.2 Plesetsk Cosmodrome, Area 35 Start 1 TBD
Gonets-M 20, Gonets-M 21, Gonets-M 22 LEO Gonets SatCom Communications
NET 2023 Angara A5M Vostochny Cosmodrome, Site 1A TBD
Orel LEO Roscosmos Space capsule
Uncrewed test launch of Orel spacecraft
NET 2024 Angara A5M Vostochny Cosmodrome, Site 1A TBD
Orel LEO Roscosmos Space capsule
Crewed test launch of Orel spacecraft
NET December 2024 Angara A5/Briz-M Vostochny Cosmodrome, Site 1A TBD
Spektr-UV Sun-Earth L2 Lagrange Point Roscosmos Ultraviolet space telescope
NET 2028 Angara A5/Briz-M Vostochny Cosmodrome, Site 1A TBD
Spektr-M Sun-Earth L2 Lagrange Point Roscosmos Millimeter wavelength space telescope
NET 2029 Angara A5M Vostochny Cosmodrome, Site 1A TBD
Orel TLI Roscosmos Space capsule
Crewed Lunar flyby mission

Related projects

The South Korean launch vehicle Naro-1 used a first stage derived from Angara's URM-1 (fitted with a lower-thrust version of the RD-191 engine called RD-151). The vehicle made its first flight on 25 August 2009. The flight was not successful, but the first stage operated as expected. A second launch on 10 June 2010 ended in failure, when contact with the rocket was lost 136 seconds after launch. The Joint Failure Review Board failed to come to a consensus on the cause of the failure.[41] The third flight on 30 January 2013 successfully reached orbit.

Comparable rockets

See also


  1. ^ "Angara-5 to replace Proton".
  2. ^ Ralph, Eric. "Russia quietly shelves development of sole SpaceX Falcon 9-competitive rocket". Retrieved 31 August 2018.
  3. ^ "The capacity of the plant in Omsk will only be enough for half of the plans for the release of Angara rockets".
  4. ^ "Angara Launch Vehicle Family". Retrieved 11 September 2017.[permanent dead link]
  5. ^ "Kazakhstan Finally Ratifies Baikonur Rental Deal With Russia". SpaceDaily. 12 April 2010. Retrieved 11 July 2014.
  6. ^ Zak, Anatoly (3 July 2016). "Origin of the Angara project". RussianSpaceWeb. Retrieved 11 September 2017.
  7. ^ a b c d Vorontsov, Dmitri; Igor Afanasyev (10 November 2009). "Angara getting ready for launch". Russia CIS Observer. 3 (26). Archived from the original on 1 January 2010. Retrieved 3 January 2010. CS1 maint: discouraged parameter (link)
  8. ^ Zak, Anatoly (2 August 2017). "Building Angara". RussianSpaceWeb. Retrieved 11 September 2017.
  9. ^ "A new engine is ready for Angara" (in Russian). 5 September 2008.
  10. ^ "URM-1 is being prepared for the burn tests" (in Russian). 29 January 2009.
  11. ^ "Interview with Vladimir Nesterov, Director-General, Khrunichev Space Center". Khrunichev. 13 January 2011.
  12. ^ "Preparations for the first Angara launch". 15 August 2014. Retrieved 11 September 2017.
  13. ^ Stephen Clark (9 July 2014). "First Angara rocket launched on suborbital test flight". Spaceflight Now. Retrieved 10 July 2014.
  14. ^ Sample, Ian (9 July 2014). "Russia test launches first new space rocket since Soviet era". The Guardian. Retrieved 10 July 2014.
  15. ^ "Russia's Angara rocket 'makes debut'" Jonathan Amos BBC News 9 July 2014
  16. ^ a b c "Russia made its first test launch "Angara-A5"". RIA Novosti. 23 December 2014. Retrieved 23 December 2014.
  17. ^
  18. ^ "Second test launch of Angara-A5 heavy rocket carried out in Plesetsk". TASS. 14 December 2020. Retrieved 14 December 2020.
  19. ^ "Russia's Roscosmos chief confirms plans to launch two Angara carrier rockets in 2021". TASS. 14 December 2020. Retrieved 14 December 2020.
  20. ^ a b c d "Angara Launch Vehicles Family". Khrunichev. Retrieved 25 July 2009.
  21. ^ a b "Angara A5". Spaceflight 101. Archived from the original on 25 September 2015. Retrieved 4 May 2018.
  22. ^ Zak, Anatoly (12 January 2016). "URM-1 rocket module". RussianSpaceWeb. Retrieved 11 September 2017.
  23. ^ a b c "Angara 1.2". Spaceflight 101. Archived from the original on 24 September 2015. Retrieved 4 May 2018.
  24. ^ Zak, Anatoly (9 October 2016). "URM-2 rocket module". RussianSpaceWeb. Retrieved 11 September 2017.
  25. ^ Zak, Anatoly (22 July 2017). "Angara to replace Proton". Retrieved 11 September 2017.
  26. ^ a b c d "Angara Launch Vehicles Family". Khrunichev State Research and Production Space Center. Retrieved 4 May 2018.
  27. ^ a b "Angara, Russia's brand-new launch vehicle, is successfully launched from Plesetsk". Khrunichev. Retrieved 11 July 2014.
  28. ^ a b "Launch Schedule". Spaceflight Now. 12 December 2020. Retrieved 14 December 2020.
  29. ^ "Angara A2". Archived from the original on 18 January 2015. Retrieved 4 May 2018.
  30. ^ Zak, Anatoly (21 July 2017). "Angara-5P launch vehicle". RussianSpaceWeb. Retrieved 11 September 2017.
  31. ^ Zak, Anatoly (23 July 2017). "Angara-A5V (Angara 5V) launch vehicle". RussianSpaceWeb. Retrieved 11 September 2017.
  32. ^ "Angara A7". Archived from the original on 2 July 2014. Retrieved 4 May 2018.
  33. ^ Zak, Anatoly (12 November 2011). "The Angara-7 rocket". RussianSpaceWeb. Retrieved 11 September 2017.
  34. ^ Zak, Anatoly (8 January 2013). "Angara-100". RussianSpaceWeb. Retrieved 11 September 2017.
  35. ^ "Baikal Reusable Launch Vehicle". Khrunichev. Retrieved 3 January 2010.
  36. ^ a b c "KVTK" (in Russian). Khrunichev State Research and Production Space Center. Archived from the original on 12 September 2017. Retrieved 18 September 2009.
  37. ^ "Angara A7". Spaceflight101. Archived from the original on 11 July 2014. Retrieved 11 July 2014.
  38. ^ Zak, Anatoly (14 November 2014). "Angara to move to Vostochny". Retrieved 14 November 2014.
  39. ^ "Russia Reviews Proton Breeze M Reliability". Aviation Week. 19 March 2013. Retrieved 4 May 2018.
  40. ^ "Разгонный блок "Бриз-М" вывел на целевую орбиту условный спутник, запущенный на "Ангаре"" [Briz-M upper stage brought satellite to orbit, launched by Angara] (in Russian). ITAR-TASS. 23 December 2014. Retrieved 23 December 2014.
  41. ^ Probe into failed launch, KBS World

External links

  • «Ангара» с омским паспортом
  • Angara family page by the Khrunichev Center (in Russian)
  • Angara family, at Encyclopedia Astronautica
  • Angara family, at RussianSpaceWeb