Anger function

Summary

In mathematics, the Anger function, introduced by C. T. Anger (1855), is a function defined as

Plot of the Anger function J v(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the Anger function J v(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

with complex parameter and complex variable .[1] It is closely related to the Bessel functions.

The Weber function (also known as Lommel–Weber function), introduced by H. F. Weber (1879), is a closely related function defined by

and is closely related to Bessel functions of the second kind.

Relation between Weber and Anger functions edit

The Anger and Weber functions are related by

 
Plot of the Weber function E v(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
 

so in particular if ν is not an integer they can be expressed as linear combinations of each other. If ν is an integer then Anger functions Jν are the same as Bessel functions Jν, and Weber functions can be expressed as finite linear combinations of Struve functions.

Power series expansion edit

The Anger function has the power series expansion[2]

 

While the Weber function has the power series expansion[2]

 

Differential equations edit

The Anger and Weber functions are solutions of inhomogeneous forms of Bessel's equation

 

More precisely, the Anger functions satisfy the equation[2]

 

and the Weber functions satisfy the equation[2]

 

Recurrence relations edit

The Anger function satisfies this inhomogeneous form of recurrence relation[2]

 

While the Weber function satisfies this inhomogeneous form of recurrence relation[2]

 

Delay differential equations edit

The Anger and Weber functions satisfy these homogeneous forms of delay differential equations[2]

 
 

The Anger and Weber functions also satisfy these inhomogeneous forms of delay differential equations[2]

 
 

References edit

  1. ^ Prudnikov, A.P. (2001) [1994], "Anger function", Encyclopedia of Mathematics, EMS Press
  2. ^ a b c d e f g h Paris, R. B. (2010), "Anger-Weber Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.