Automorphic L-function

Summary

In mathematics, an automorphic L-function is a function L(s,π,r) of a complex variable s, associated to an automorphic representation π of a reductive group G over a global field and a finite-dimensional complex representation r of the Langlands dual group LG of G, generalizing the Dirichlet L-series of a Dirichlet character and the Mellin transform of a modular form. They were introduced by Langlands (1967, 1970, 1971).

Borel (1979) and Arthur & Gelbart (1991) gave surveys of automorphic L-functions.

Properties edit

Automorphic  -functions should have the following properties (which have been proved in some cases but are still conjectural in other cases).

The L-function   should be a product over the places   of   of local   functions.

 

Here the automorphic representation   is a tensor product of the representations   of local groups.

The L-function is expected to have an analytic continuation as a meromorphic function of all complex  , and satisfy a functional equation

 

where the factor   is a product of "local constants"

 

almost all of which are 1.

General linear groups edit

Godement & Jacquet (1972) constructed the automorphic L-functions for general linear groups with r the standard representation (so-called standard L-functions) and verified analytic continuation and the functional equation, by using a generalization of the method in Tate's thesis. Ubiquitous in the Langlands Program are Rankin-Selberg products of representations of GL(m) and GL(n). The resulting Rankin-Selberg L-functions satisfy a number of analytic properties, their functional equation being first proved via the Langlands–Shahidi method.

In general, the Langlands functoriality conjectures imply that automorphic L-functions of a connected reductive group are equal to products of automorphic L-functions of general linear groups. A proof of Langlands functoriality would also lead towards a thorough understanding of the analytic properties of automorphic L-functions.

See also edit

References edit

  • Arthur, James; Gelbart, Stephen (1991), "Lectures on automorphic L-functions", in Coates, John; Taylor, M. J. (eds.), L-functions and arithmetic (Durham, 1989) (PDF), London Math. Soc. Lecture Note Ser., vol. 153, Cambridge University Press, pp. 1–59, doi:10.1017/CBO9780511526053.003, ISBN 978-0-521-38619-7, MR 1110389
  • Borel, Armand (1979), "Automorphic L-functions", in Borel, Armand; Casselman, W. (eds.), Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, vol. XXXIII, Providence, R.I.: American Mathematical Society, pp. 27–61, doi:10.1090/pspum/033.2/546608, ISBN 978-0-8218-1437-6, MR 0546608
  • Cogdell, James W.; Kim, Henry H.; Murty, Maruti Ram (2004), Lectures on automorphic L-functions, Fields Institute Monographs, vol. 20, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-3516-6, MR 2071722
  • Gelbart, Stephen; Piatetski-Shapiro, Ilya; Rallis, Stephen (1987), Explicit Constructions of Automorphic L-Functions, Lecture Notes in Mathematics, vol. 1254, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0078125, ISBN 978-3-540-17848-4, MR 0892097
  • Godement, Roger; Jacquet, Hervé (1972), Zeta Functions of Simple Algebras, Lecture Notes in Mathematics, vol. 260, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0070263, ISBN 978-3-540-05797-0, MR 0342495
  • Jacquet, H.; Piatetski-Shapiro, I. I.; Shalika, J. A. (1983), "Rankin-Selberg Convolutions", Amer. J. Math., 105 (2): 367–464, doi:10.2307/2374264, JSTOR 2374264
  • Langlands, Robert (1967), Letter to Prof. Weil
  • Langlands, R. P. (1970), "Problems in the theory of automorphic forms", Lectures in modern analysis and applications, III, Lecture Notes in Math, vol. 170, Berlin, New York: Springer-Verlag, pp. 18–61, doi:10.1007/BFb0079065, ISBN 978-3-540-05284-5, MR 0302614
  • Langlands, Robert P. (1971) [1967], Euler products, Yale University Press, ISBN 978-0-300-01395-5, MR 0419366
  • Shahidi, F. (1981), "On certain "L"-functions", Amer. J. Math., 103 (2): 297–355, doi:10.2307/2374219, JSTOR 2374219