Bayesian multivariate linear regression

Summary

In statistics, Bayesian multivariate linear regression is a Bayesian approach to multivariate linear regression, i.e. linear regression where the predicted outcome is a vector of correlated random variables rather than a single scalar random variable. A more general treatment of this approach can be found in the article MMSE estimator.

Details edit

Consider a regression problem where the dependent variable to be predicted is not a single real-valued scalar but an m-length vector of correlated real numbers. As in the standard regression setup, there are n observations, where each observation i consists of k−1 explanatory variables, grouped into a vector   of length k (where a dummy variable with a value of 1 has been added to allow for an intercept coefficient). This can be viewed as a set of m related regression problems for each observation i:

 
where the set of errors   are all correlated. Equivalently, it can be viewed as a single regression problem where the outcome is a row vector   and the regression coefficient vectors are stacked next to each other, as follows:
 

The coefficient matrix B is a   matrix where the coefficient vectors   for each regression problem are stacked horizontally:

 

The noise vector   for each observation i is jointly normal, so that the outcomes for a given observation are correlated:

 

We can write the entire regression problem in matrix form as:

 
where Y and E are   matrices. The design matrix X is an   matrix with the observations stacked vertically, as in the standard linear regression setup:
 

The classical, frequentists linear least squares solution is to simply estimate the matrix of regression coefficients   using the Moore-Penrose pseudoinverse:

 

To obtain the Bayesian solution, we need to specify the conditional likelihood and then find the appropriate conjugate prior. As with the univariate case of linear Bayesian regression, we will find that we can specify a natural conditional conjugate prior (which is scale dependent).

Let us write our conditional likelihood as[1]

 
writing the error   in terms of   and   yields
 

We seek a natural conjugate prior—a joint density   which is of the same functional form as the likelihood. Since the likelihood is quadratic in  , we re-write the likelihood so it is normal in   (the deviation from classical sample estimate).

Using the same technique as with Bayesian linear regression, we decompose the exponential term using a matrix-form of the sum-of-squares technique. Here, however, we will also need to use the Matrix Differential Calculus (Kronecker product and vectorization transformations).

First, let us apply sum-of-squares to obtain new expression for the likelihood:

 
 

We would like to develop a conditional form for the priors:

 
where   is an inverse-Wishart distribution and   is some form of normal distribution in the matrix  . This is accomplished using the vectorization transformation, which converts the likelihood from a function of the matrices   to a function of the vectors  .

Write

 

Let

 
where   denotes the Kronecker product of matrices A and B, a generalization of the outer product which multiplies an   matrix by a   matrix to generate an   matrix, consisting of every combination of products of elements from the two matrices.

Then

 
which will lead to a likelihood which is normal in  .

With the likelihood in a more tractable form, we can now find a natural (conditional) conjugate prior.

Conjugate prior distribution edit

The natural conjugate prior using the vectorized variable   is of the form:[1]

 
where
 
and
 

Posterior distribution edit

Using the above prior and likelihood, the posterior distribution can be expressed as:[1]

 
where  . The terms involving   can be grouped (with  ) using:
 
with
 

This now allows us to write the posterior in a more useful form:

 

This takes the form of an inverse-Wishart distribution times a Matrix normal distribution:

 
and
 

The parameters of this posterior are given by:

 
 
 
 

See also edit

References edit

  1. ^ a b c Peter E. Rossi, Greg M. Allenby, Rob McCulloch. Bayesian Statistics and Marketing. John Wiley & Sons, 2012, p. 32.
  • Box, G. E. P.; Tiao, G. C. (1973). "8". Bayesian Inference in Statistical Analysis. Wiley. ISBN 0-471-57428-7.
  • Geisser, S. (1965). "Bayesian Estimation in Multivariate Analysis". The Annals of Mathematical Statistics. 36 (1): 150–159. JSTOR 2238083.
  • Tiao, G. C.; Zellner, A. (1964). "On the Bayesian Estimation of Multivariate Regression". Journal of the Royal Statistical Society. Series B (Methodological). 26 (2): 277–285. JSTOR 2984424.