Bedangadas Mohanty

Summary

Bedangadas Mohanty is an Indian physicist specialising in experimental high energy physics, and is affiliated to National Institute of Science Education and Research, Bhubaneswar. He has been awarded the Infosys Prize in Physical Sciences for 2021 that was announced on 2 December 2021. He was awarded the Shanti Swarup Bhatnagar Prize for Science and Technology in 2015, the highest science award in India, in the physical sciences category.[1] He has been elected as the fellow of the Indian National Science Academy, New Delhi, Indian Academy of Sciences, Bangalore and National Academy of Sciences, India.[2] In 2020, he was elected as a fellow of American Physical Society.

Bedangadas Mohanty
Born (1973-04-08) 8 April 1973 (age 51)
Cuttack, Odisha, India
NationalityIndian
Alma materUtkal University Bhubaneswar
Institute of Physics, Bhubaneswar
Known forExperimental High Energy Physics
AwardsInfosys Prize in Physical Sciences, 2021
S.S. Bhatnagar Award 2015
SwarnaJayanti Fellowship, 2010-11
INSA Young Scientist Medal, 2003
Scientific career
FieldsPhysics
InstitutionsNational Institute of Science Education and Research, Bhubaneswar

Career edit

Prof. Bedangadas Mohanty completed his BSc (Physics Honors) from Ranvenshaw College, Cuttack and MSc (Physics) from Utkal University, Bhubaneshwar. After finishing his PhD from Institute of Physics, Bhubaneswar in 2002, he was a DAE K.S. Krishnan Fellow and Scientific Officer at Variable Energy Cyclotron Centre[3] till 2012. Meanwhile, he was a Post-Doctoral researcher at Lawrence Berkeley National Laboratory in 2006–2007, and Spectra Physics Working Group Co-convenor of STAR Experiment at the Relativistic Heavy Ion Collider Facility, Brookhaven National Laboratory from 2006 to 2008. Later in May 2008, he was selected as the Physics Analysis Coordinator of the STAR Experiment, with the responsibility to formulate the physics goals of the experiment, regulate and lead the publication of papers, maintenance of database, information and data records etc. From 2011 to 2014, he was the Deputy Spokesperson STAR Experiment, and was involved in taking all scientific and administrative decisions regarding function of the collaboration. He was the co-founder of the Beam Energy Scan Program at RHIC to study the QCD Phase Diagram. From 2012 onward, he has been the Council Member of STAR experiment at Brookhaven National Laboratory, USA. From 2013 onward, he has been the Collaboration Board Member of ALICE experiment at the Large Hadron Collider Facility, CERN. From 2014, he has been the Editorial Board Member of ALICE at LHC, CERN.[4] He joined NISER in 2012 as an Associate Professor. He was the Chairperson of School of Physical Sciences from 2013 - 2018. Currently Professor, and Dean Faculty Affairs, NISER.[citation needed]

Research edit

Dr. Mohanty has contributed to the establishment of the quark-hadron transition and first direct comparison between experimental high energy heavy-ion collisions data and QCD calculations.[5] and "Physics World" considered it among the 10 best in the year 2011.[6] His work in the STAR experiment has led to an exciting possibility of the existence of a critical point in the phase diagram of QCD. One of this work established the observable for the critical point search in the experiment.[7] This is considered as a landmark work in the field. He has very successfully led the beam energy scan physics program in this direction to publish important scientific papers in Physical Review Letters related to the QCD Critical Point.[8][9] He was instrumental in pushing for such a program at Quark Matter 2009.[10] Then demonstrated the readiness of the STAR detector and the Collider to undertake the proposed QCD critical point search and the exploration of the QCD phase diagram at RHIC.[11]

He has made significant contribution to the discovery of the Quark Gluon Plasma (QGP) in the laboratory. This state of matter existed in the first few microsecond old Universe. In such matter, quarks and gluons are de-confined and move freely in volumes much larger than nucleonic scales. In order to achieve such matter in the laboratory, temperatures of the order of 1012 kelvins need to be created. The quark-gluon plasma allows for studying transport properties like viscosity, thermal conductivity, opacity and diffusion co-efficient of QCD matter. Dr. Mohanty has several significant papers on signatures that experimentally confirm the existence of QGP, related to observation of strangeness enhancement in heavy-ion collisions,[12] jet quenching effect,[13][14][15] and partonic collectivity.[16][17]

Dr. Mohanty as the physics analysis coordinator of the STAR experiment led a team that discovered the heaviest known anti-matter nuclei the anti-alpha (consisting of two anti-protons and two anti-neutrons) in the laboratory.[18] This measurement provided the probability of production of anti-helium through nuclear interactions, thereby providing the predominant baseline for measurements carried out in space. As the physics analysis leader led a team that discovered the heaviest strange anti-matter nuclei. Normal nuclei are formed only of protons and neutrons. Hyper-nuclei are made up of proton, neutron and a hyperon. The anti-hypertrion, nuclei consists of anti-proton, anti-neutron and anti-lambda (a strange hadron).[19] It has implications for neutron stars and also understanding of the nuclear force. To study nuclei, scientists arrange the various nuclides into a two-dimensional table of nuclides. On one axis is the number of neutrons N, and on the other is the number of protons Z. Because of the discovery of antihyperon it introduces a third axis (strangeness) and the table has become three-dimensional.

J. D. Bjorken, Frank Wilczek and collaborators have advocated the existence of Disoriented Chiral Condensates (DCC) due to chiral phase transitions in QCD matter. The possibility of producing quark-gluon plasma in high energy collisions is an exciting one, from the point of view of observing the chiral phase transition as the hot plasma expands and cools. As the system returns to its normal phase it is possible for regions of misaligned vacuum to be produced. These domains, which are analogous to misaligned domains of a ferromagnet have been named Disoriented Chiral Condensates (DCCs). DCC's are regions where the chiral field is partially aligned in an isospin direction. These domains relax back to ground state configuration by emitting pions of particular species. Towards this goal and since neutral pion readily decays to photons, Dr. Mohanty has put in several years of dedicated efforts from his side to establish the photon production in heavy-ion collisions using a detector built in India and search for the signature of the chiral phase transition (through DCC). He is the lead author of the Physical Review Letters paper on inclusive photon production in heavy-ion collisions using the Indian detector.[20] His contribution to photon production and to the physics of DCC in heavy-ion collisions led to the invitation from the editorial board of Physics Reports to write a review article, at the young age of 30 years.[21]

Awards edit

  • Year 2021: Infosys Prize in Physical Sciences [22]
  • Year 2020: Fellow of American Physical Society [23]
  • Year 2017: J C Bose National Fellowship, Department of Science and Technology, Govt. of India[24]
  • Year 2017: Fellow of Indian Academy of Sciences, Bangalore
  • Year 2017: Fellow of Indian National Science Academy New Delhi.
  • Year 2015: Shanti Swarup Bhatnagar Prize for Physical Sciences.
  • Year 2010-2011: SwarnaJayanti Fellowship - Department of Science and Technology, Govt. of. India[25]
  • Year 2010: Outstanding Research Investigator award - DAE-Science Research Council Fellowship - Govt. of India[26]
  • Year 2006: Young Scientist award – Department of Atomic Energy, Govt. of India
  • Year 2003: Associate of Indian Science Academy, Bangalore[27]
  • Year 2003: INSA Young Scientist medal – Indian National Science Academy, New Delhi
  • Year 2002: Dr. K. S. Krishnan Fellowship – Department of Atomic Energy and Board of Research in Nuclear Sciences, Govt. of India[28]
  • Year 2002: Best PhD thesis award in nuclear physics - Indian Physics Association
  • Year 1996: University Gold Medal for performance in Masters in Science (Physics) - Utkal University, Bhubaneswar, India

References edit

  1. ^ "Brief Profile of the Awardee". Shanti Swarup Bhatnagar Prize. CSIR Human Resource Development Group, New Delhi. Retrieved 5 November 2015.
  2. ^ "INSA: Indian Fellows Elected". Indian National Science Academy. INSA, New Delhi. Retrieved 1 January 2017.
  3. ^ "HBNI Activities in VECC". Variable Energy Cyclotron Centre. VECC, Kolkata.
  4. ^ "Membership - ALICE Collaboration". ALICE Collaboration. CERN, Geneva.
  5. ^ Gupta, S.; Luo, X.; Mohanty, B.; Ritter, H. G.; Xu, N. (2011). "Scale for the Phase Diagram of Quantum Chromodynamics". Science. 332 (6037): 1525–8. arXiv:1105.3934. Bibcode:2011Sci...332.1525G. doi:10.1126/science.1204621. PMID 21700867. S2CID 9403580.
  6. ^ "Physics World reveals its top 10 breakthroughs for 2011". 16 December 2011.
  7. ^ Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barnby, L. S.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bonner, B. E.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bridgeman, A.; Bruna, E.; Bueltmann, S.; et al. (2010). "Higher Moments of Net Proton Multiplicity Distributions at RHIC". Physical Review Letters. 105 (2): 022302. arXiv:1004.4959. Bibcode:2010PhRvL.105b2302A. doi:10.1103/PhysRevLett.105.022302. PMID 20867702. S2CID 1190941.
  8. ^ Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; et al. (2014). "Energy Dependence of Moments of Net-Proton Multiplicity Distributions at RHIC". Physical Review Letters. 112 (3): 032302. arXiv:1309.5681. Bibcode:2014PhRvL.112c2302A. doi:10.1103/PhysRevLett.112.032302. PMID 24484135. S2CID 4490264.
  9. ^ Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; et al. (2014). "Beam Energy Dependence of Moments of the Net-Charge Multiplicity Distributions in Au+Au Collisions at RHIC". Physical Review Letters. 113 (9): 092301. arXiv:1402.1558. Bibcode:2014PhRvL.113i2301A. doi:10.1103/PhysRevLett.113.092301. PMID 25215979. S2CID 119250604.
  10. ^ Mohanty, Bedangadas (2009). "QCD Phase Diagram: Phase Transition, Critical Point and Fluctuations". Nuclear Physics A. 830 (1–4): 899c–907c. arXiv:0907.4476. Bibcode:2009NuPhA.830..899M. doi:10.1016/j.nuclphysa.2009.10.132. S2CID 17978308.
  11. ^ Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bnzarov, I.; Bonner, B. E.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bridgeman, A.; et al. (2010). "Identified particle production, azimuthal anisotropy, and interferometry measurements in Au+Aucollisions atsNN=9.2GeV". Physical Review C. 81 (2): 024911. arXiv:0909.4131. Bibcode:2010PhRvC..81b4911A. doi:10.1103/PhysRevC.81.024911. S2CID 10470476.
  12. ^ Abelev, B.I.; Aggarwal, M.M.; Ahammed, Z.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R.R.; Bharadwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B.E.; Botje, M.; Bouchet, J.; et al. (2009). "Energy and system size dependence of ϕ meson production in Cu+Cu and Au+Au collisions". Physics Letters B. 673 (3): 183–191. arXiv:0810.4979. Bibcode:2009PhLB..673..183S. doi:10.1016/j.physletb.2009.02.037.
  13. ^ Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Anderson, M.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S-L.; Bonner, B. E.; Botje, M.; Bouchet, J.; Brandin, A. V.; et al. (2006). "Identified Baryon and Meson Distributions at Large Transverse Momenta from Au+Au Collisions atsNN=200 GeV". Physical Review Letters. 97 (15): 152301. arXiv:nucl-ex/0606003. Bibcode:2006PhRvL..97o2301A. doi:10.1103/PhysRevLett.97.152301. PMID 17155321. S2CID 119327362.
  14. ^ Abelev, B.I.; Aggarwal, M.M.; Ahammed, Z.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baumgart, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Betts, R.R.; Bharadwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Billmeier, A.; Bland, L.C.; Blyth, S.-L.; Bombara, M.; Bonner, B.E.; Botje, M.; Bouchet, J.; et al. (2007). "Energy dependence of π±, p and View the MathML source transverse momentum spectra for Au+Au collisions at View the MathML source and 200 GeV". Physics Letters B. 655 (3–4): 104–113. arXiv:nucl-ex/0703040. Bibcode:2007PhLB..655..104S. doi:10.1016/j.physletb.2007.06.035. S2CID 118968988.
  15. ^ Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Bezverkhny, B.I.; Bharadwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Blyth, S.-L.; et al. (2006). "Identified hadron spectra at large transverse momentum in p+p and d+Au collisions at View the MathML source". Physics Letters B. 637 (3): 161–169. arXiv:nucl-ex/0601033. Bibcode:2006PhLB..637..161S. doi:10.1016/j.physletb.2006.04.032. S2CID 119459065.
  16. ^ Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; et al. (2016). "Centrality and Transverse Momentum Dependence of Elliptic Flow of Multistrange Hadrons andϕMeson in Au+Au Collisions atsNN=200 GeV". Physical Review Letters. 116 (6): 062301. Bibcode:2016PhRvL.116f2301A. doi:10.1103/PhysRevLett.116.062301. hdl:1911/104998. PMID 26918982.
  17. ^ Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S-L.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; et al. (2007). "Partonic Flow and ϕ-Meson Production in Au+Au Collisions atsNN=200 GeV". Physical Review Letters. 99 (11): 112301. arXiv:nucl-ex/0703033. Bibcode:2007PhRvL..99k2301A. doi:10.1103/PhysRevLett.99.112301. PMID 17930430.
  18. ^ Agakishiev, H.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anderson, B. D.; Anson, C. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Beavis, D. R.; Behera, N. K.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bridgeman, A.; et al. (2011). "Observation of the antimatter helium-4 nucleus". Nature. 473 (7347): 353–6. arXiv:1103.3312. Bibcode:2011Natur.473..353S. doi:10.1038/nature10079. PMID 21516103. S2CID 118484566.
  19. ^ Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barnby, L. S.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bonner, B. E.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bridgeman, A.; Bruna, E.; Bueltmann, S.; et al. (2010). "Observation of an Antimatter Hypernucleus". Science. 328 (5974): 58–62. arXiv:1003.2030. Bibcode:2010Sci...328...58.. doi:10.1126/science.1183980. PMID 20203011. S2CID 206524312.
  20. ^ Adams, J.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Badyal, S. K.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Berger, J.; Bezverkhny, B. I.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Billmeier, A.; Bland, L. C.; Blyth, C. O.; Blyth, S.; et al. (2005). "Multiplicity and Pseudorapidity Distributions of Photons in Au+Au Collisions atsNN=62.4 GeV". Physical Review Letters. 95 (6): 062301. arXiv:nucl-ex/0502008. Bibcode:2005PhRvL..95f2301A. doi:10.1103/PhysRevLett.95.062301. PMID 16090941. S2CID 119516873.
  21. ^ Mohanty, B.; Serreau, J. (2005). "Disoriented chiral condensate: Theory and experiment". Physics Reports. 414 (6): 263–358. arXiv:hep-ph/0504154. Bibcode:2005PhR...414..263M. doi:10.1016/j.physrep.2005.04.004. S2CID 119527016.
  22. ^ "Infosys Prize - Laureates 2021 - Prof. Bedangadas Mohanty". www.infosys-science-foundation.com. Retrieved 3 December 2021.
  23. ^ https://www.aps.org/
  24. ^ "Intensification of Research in High Priority Area (IRHPA): Science and Engineering Research Board, Established through an Act of Parliament: SERB Act 2008, Department of Science & Technology, Government of India".
  25. ^ "Swarnajayanti Fellowships Scheme | Department of Science & Technology".
  26. ^ "BRNS GMS". Archived from the original on 26 August 2016. Retrieved 31 July 2016.
  27. ^ "Associateship | Fellowship | Indian Academy of Sciences".
  28. ^ https://daebrns.gov.in/brns_fellowship.php[full citation needed]

External links edit

  • Mohanty's home page