Bernoulli polynomials of the second kind

Summary

The Bernoulli polynomials of the second kind[1][2] ψn(x), also known as the Fontana-Bessel polynomials,[3] are the polynomials defined by the following generating function:

The first five polynomials are:

Some authors define these polynomials slightly differently[4][5]

so that

and may also use a different notation for them (the most used alternative notation is bn(x)). Under this convention, the polynomials form a Sheffer sequence.

The Bernoulli polynomials of the second kind were largely studied by the Hungarian mathematician Charles Jordan,[1][2] but their history may also be traced back to the much earlier works.[3]

Integral representations edit

The Bernoulli polynomials of the second kind may be represented via these integrals[1][2]

 

as well as[3]

 

These polynomials are, therefore, up to a constant, the antiderivative of the binomial coefficient and also that of the falling factorial.[1][2][3]

Explicit formula edit

For an arbitrary n, these polynomials may be computed explicitly via the following summation formula[1][2][3]

 

where s(n,l) are the signed Stirling numbers of the first kind and Gn are the Gregory coefficients.

The expansion of the Bernoulli polynomials of the second kind into a Newton series reads[1][2]

 

It can be shown using the second integral representation and Vandermonde's identity.

Recurrence formula edit

The Bernoulli polynomials of the second kind satisfy the recurrence relation[1][2]

 

or equivalently

 

The repeated difference produces[1][2]

 

Symmetry property edit

The main property of the symmetry reads[2][4]

 

Some further properties and particular values edit

Some properties and particular values of these polynomials include

 

where Cn are the Cauchy numbers of the second kind and Mn are the central difference coefficients.[1][2][3]

Some series involving the Bernoulli polynomials of the second kind edit

The digamma function Ψ(x) may be expanded into a series with the Bernoulli polynomials of the second kind in the following way[3]

 

and hence[3]

 

and

 

where γ is Euler's constant. Furthermore, we also have[3]

 

where Γ(x) is the gamma function. The Hurwitz and Riemann zeta functions may be expanded into these polynomials as follows[3]

 

and

 

and also

 

The Bernoulli polynomials of the second kind are also involved in the following relationship[3]

 

between the zeta functions, as well as in various formulas for the Stieltjes constants, e.g.[3]

 

and

 

which are both valid for   and  .

See also edit

References edit

  1. ^ a b c d e f g h i Jordan, Charles (1928), "Sur des polynomes analogues aux polynomes de Bernoulli, et sur des formules de sommation analogues à celle de Maclaurin-Euler", Acta Sci. Math. (Szeged), 4: 130–150
  2. ^ a b c d e f g h i j Jordan, Charles (1965). The Calculus of Finite Differences (3rd Edition). Chelsea Publishing Company.
  3. ^ a b c d e f g h i j k l Blagouchine, Iaroslav V. (2018), "Three notes on Ser's and Hasse's representations for the zeta-functions" (PDF), INTEGERS: The Electronic Journal of Combinatorial Number Theory, 18A (#A3): 1–45 arXiv
  4. ^ a b Roman, S. (1984). The Umbral Calculus. New York: Academic Press.
  5. ^ Weisstein, Eric W. Bernoulli Polynomial of the Second Kind. From MathWorld--A Wolfram Web Resource.

Mathematics edit