so that the second beth number is equal to , the cardinality of the continuum (the cardinality of the set of the real numbers), and the third beth number is the cardinality of the power set of the continuum.
Because of Cantor's theorem, each set in the preceding sequence has cardinality strictly greater than the one preceding it. For infinite limit ordinals, the corresponding beth number is defined to be the supremum of the beth numbers for all ordinals strictly smaller than :
One can show that this definition is equivalent to
For instance:
is the cardinality of .
is the cardinality of .
is the cardinality of .
This equivalence can be shown by seeing that:
for any set , the union set of all its members can be no larger than the supremum of its member cardinalities times its own cardinality,
for any two non-zero cardinalities , if at least one of them is an infinite cardinality, then the product will be the larger of the two,
the set will be smaller than most or all of its subsets for any limit ordinal
therefore, for any limit ordinal
Note that this behavior is different from that of successor ordinals. Cardinalities less than but greater than any can exist when is a successor ordinal (in that case, the existence is undecidable in ZFC and controlled by the Generalized Continuum Hypothesis); but cannot exist when is a limit ordinal, even under the second definition presented.
Assuming the axiom of choice, infinite cardinalities are linearly ordered; no two cardinalities can fail to be comparable. Thus, since by definition no infinite cardinalities are between and , it follows that
Consequently, in ZF absent ur-elements, with or without the axiom of choice, for any cardinals and , the equality
holds for all sufficiently large ordinals . That is, there is an ordinal such that the equality holds for every ordinal .
This also holds in Zermelo–Fraenkel set theory with ur-elements (with or without the axiom of choice), provided that the ur-elements form a set which is equinumerous with a pure set (a set whose transitive closure contains no ur-elements). If the axiom of choice holds, then any set of ur-elements is equinumerous with a pure set.
Borel determinacy
edit
Borel determinacy is implied by the existence of all beths of countable index.[5]
^Jech, Thomas (2002). Set Theory (3rd ed.). Springer. p. 55. ISBN 978-3-540-44085-7. Millennium ed, rev. and expanded. Corrected 4th printing 2006.
^ abSoltanifar, Mohsen (2023). "A classification of elements of function space F(R,R)". Mathematics. 11 (17): 3715. arXiv:2308.06297. doi:10.3390/math11173715.
^Soltanifar, Mohsen (2021). "A generalization of the Hausdorff dimension theorem for deterministic fractals". Mathematics. 9 (13): 1546. arXiv:2007.07991. doi:10.3390/math9131546.
^Soltanifar, Mohsen (2022). "The second generalization of the Hausdorff dimension theorem for random fractals". Mathematics. 10 (5): 706. doi:10.3390/math10050706. hdl:1807/110291.
^Leinster, Tom (23 July 2021). "Borel Determinacy Does Not Require Replacement". The n-Category Café. The University of Texas at Austin. Retrieved 25 August 2021.
Bibliography
edit
T. E. Forster, Set Theory with a Universal Set: Exploring an Untyped Universe, Oxford University Press, 1995 — Beth number is defined on page 5.
Bell, John Lane; Slomson, Alan B. (2006) [1969]. Models and Ultraproducts: An Introduction (reprint of 1974 ed.). Dover Publications. ISBN 0-486-44979-3. See pages 6 and 204–205 for beth numbers.