In mathematics , a biorthogonal system is a pair of indexed families of vectors
v
~
i
in
E
and
u
~
i
in
F
{\displaystyle {\tilde {v}}_{i}{\text{ in }}E{\text{ and }}{\tilde {u}}_{i}{\text{ in }}F}
such that
⟨
v
~
i
,
u
~
j
⟩
=
δ
i
,
j
,
{\displaystyle \left\langle {\tilde {v}}_{i},{\tilde {u}}_{j}\right\rangle =\delta _{i,j},}
where
E
{\displaystyle E}
and
F
{\displaystyle F}
form a pair of topological vector spaces that are in duality ,
⟨
⋅
,
⋅
⟩
{\displaystyle \langle \,\cdot ,\cdot \,\rangle }
is a bilinear mapping and
δ
i
,
j
{\displaystyle \delta _{i,j}}
is the Kronecker delta .
An example is the pair of sets of respectively left and right eigenvectors of a matrix, indexed by eigenvalue , if the eigenvalues are distinct.[ 1]
A biorthogonal system in which
E
=
F
{\displaystyle E=F}
and
v
~
i
=
u
~
i
{\displaystyle {\tilde {v}}_{i}={\tilde {u}}_{i}}
is an orthonormal system .
Projection
edit
Construction
edit
Given a possibly non-orthogonal set of vectors
u
=
(
u
i
)
{\displaystyle \mathbf {u} =\left(u_{i}\right)}
and
v
=
(
v
i
)
{\displaystyle \mathbf {v} =\left(v_{i}\right)}
the projection related is
P
=
∑
i
,
j
u
i
(
⟨
v
,
u
⟩
−
1
)
j
,
i
⊗
v
j
,
{\displaystyle P=\sum _{i,j}u_{i}\left(\langle \mathbf {v} ,\mathbf {u} \rangle ^{-1}\right)_{j,i}\otimes v_{j},}
where
⟨
v
,
u
⟩
{\displaystyle \langle \mathbf {v} ,\mathbf {u} \rangle }
is the matrix with entries
(
⟨
v
,
u
⟩
)
i
,
j
=
⟨
v
i
,
u
j
⟩
.
{\displaystyle \left(\langle \mathbf {v} ,\mathbf {u} \rangle \right)_{i,j}=\left\langle v_{i},u_{j}\right\rangle .}
u
~
i
:=
(
I
−
P
)
u
i
,
{\displaystyle {\tilde {u}}_{i}:=(I-P)u_{i},}
and
v
~
i
:=
(
I
−
P
)
∗
v
i
{\displaystyle {\tilde {v}}_{i}:=(I-P)^{*}v_{i}}
then is a biorthogonal system.
See also
edit
References
edit
^ Bhushan, Datta, Kanti (2008). Matrix And Linear Algebra, Edition 2: AIDED WITH MATLAB . PHI Learning Pvt. Ltd. p. 239. ISBN 9788120336186 . {{cite book}}
: CS1 maint: multiple names: authors list (link)
Jean Dieudonné, On biorthogonal systems Michigan Math. J. 2 (1953), no. 1, 7–20 [1]