Bis(triphenylphosphine)palladium chloride

Summary

Bis(triphenylphosphine)palladium chloride is a coordination compound of palladium containing two triphenylphosphine and two chloride ligands. It is a yellow solid that is soluble in some organic solvents. It is used for palladium-catalyzed coupling reactions, e.g. the Sonogashira–Hagihara reaction. The complex is square planar. Many analogous complexes are known with different phosphine ligands.

Bis(triphenylphosphine)palladium chloride
Identifiers
  • 13965-03-2 checkY
3D model (JSmol)
  • ionic form: Interactive image
  • coordination form: Interactive image
ChemSpider
  • 75895 checkY
ECHA InfoCard 100.034.299 Edit this at Wikidata
  • 6102075
  • DTXSID50930525 Edit this at Wikidata
  • InChI=1S/2C18H15P.2ClH.Pd/c2*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;;/h2*1-15H;2*1H;/q;;;;+2/p-2 checkY
    Key: YNHIGQDRGKUECZ-UHFFFAOYSA-L checkY
  • InChI=1/2C18H15P.2ClH.Pd/c2*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;;/h2*1-15H;2*1H;/q;;;;+2/p-2
    Key: YNHIGQDRGKUECZ-NUQVWONBAO
  • ionic form: [Pd+2].[Cl-].[Cl-].c3c(P(c1ccccc1)c2ccccc2)cccc3.c1ccccc1P(c2ccccc2)c3ccccc3
  • coordination form: Cl[Pd-2](Cl)([P+](c0ccccc0)(c0ccccc0)(c0ccccc0))[P+](c0ccccc0)(c0ccccc0)(c0ccccc0)
Properties
PdCl2(PPh3)2
Molar mass 701.90 g·mol−1
Appearance yellow powder
Melting point 260 °C (decomposed around 300 °C)
insoluble
Solubility soluble in chloroform, hexane, toluene, benzene, acetone[1]
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
1
0
Flash point 181.7 °C
Related compounds
Related compounds
Bis(triphenylphosphine)platinum chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Infobox references

Preparation and reactions edit

This compound may be prepared by treating palladium(II) chloride with triphenylphosphine:[2][3]

PdCl2 + 2 PPh3 → PdCl2(PPh3)2

Upon reduction with hydrazine in the presence of excess triphenylphosphine, the complex is a precursor to tetrakis(triphenylphosphine)palladium, Pd(PPh3)4:[4]

2 PdCl2(PPh3)2 + 4 PPh3 + 5 N2H4 → 2 Pd(PPh3)4 + N2 + 4 N2H5+Cl

Structure edit

Several crystal structures containing PdCl2(PPh3)2 have been reported. In all of the structures, PdCl2(PPh3)2 adopts a square planar coordination geometry and the trans isomeric form.[5][6][7][8]

Applications edit

The complex is used as a pre-catalyst for a variety of coupling reactions.[9]

 
One-pot Procedure for the Synthesis of Unsymmetrical Diarylalkynes.

The Suzuki reaction was once limited by high levels of catalyst and the limited availability of boronic acids. Replacements for halides were also found, increasing the number of coupling partners for the halide or pseudohalide as well. Using bis(triphenylphosphine)palladium chloride as the catalyst, triflates and boronic acids have been coupled on an 80 kilogram scale in good yield.[10] The same catalyst is effective for the Sonogashira coupling.[11]

See also edit

References edit

  1. ^ "PdCl2(PPh3)2". ChemSpider. Retrieved 2 January 2024.
  2. ^ Norio Miyaura; Akira Suzuki (1990). "Palladium-Catalyzed Reaction of 1-Alkenylboronates with Vinylic Halides: (1Z,3E)-1-Phenyl-1,3-octadiene". Organic Syntheses. 68: 130. doi:10.15227/orgsyn.068.0130.
  3. ^ Hiroshi Itatani; J.C.Bailar (1967). "Homogeneous Catalysis in the Reactions of olefinic Substances. V.Hydrogenation of Soybean Oil Methyl Ester with Triphenylphosphine and Triphenylarsine Palladium Catalysts". Journal of the American Oil Chemists' Society. 44: 147. doi:10.1007/BF02558176. S2CID 93580917.
  4. ^ D. R. Coulson (1972). "Tetrakis(triphenylphosphine)palladium(0)". Inorganic Syntheses. Vol. 13. pp. 121–124. doi:10.1002/9780470132449.ch23. ISBN 978-0-470-13244-9. {{cite book}}: |journal= ignored (help)
  5. ^ G. Ferguson; R. McCrindle; A. J. McAlees; M. Parvez (1982). "trans-Dichlorobis(triphenylphosphine)palladium(II)". Acta Crystallogr. B38 (10): 2679–2681. doi:10.1107/S0567740882009583.
  6. ^ G. Steyl (2006). "trans-Dichlorobis(triphenylphosphine)palladium(II) dichloromethane solvate". Acta Crystallogr. E. 62 (6): m1324–m1325. doi:10.1107/S1600536806017521.
  7. ^ J. Pons; J. García-Antón; X. Solans; M. Font-Bardia; J. Ros (2008). "trans-Dichloridobis(triphenylphosphine)palladium(II)". Acta Crystallogr. E. 64 (Pt 5): m621. doi:10.1107/S1600536808008337. PMC 2961313. PMID 21202176.
  8. ^ A. Naghipour; A. Ghorbani-Choghamarani; H. Babaee; M. Hashemi; B. Notash (2017). "Crystal structure of a novel polymorph of trans-dichlorobis (triphenylphosphine) palladium (II) and its application as a novel, efficient and retrievable catalyst for the amination of aryl halides and stille cross-coupling reactions". J. Organomet. Chem. 841: 31–38. doi:10.1016/j.jorganchem.2016.10.002.
  9. ^ René Severin; Jessica Reimer; Sven Doye (2010). "One-Pot Procedure for the Synthesis of Unsymmetrical Diarylalkynes". J. Org. Chem. 75 (10): 3518–352. doi:10.1021/jo100460v. PMID 20420397.
  10. ^ Jacks, T. E.; Belmont, Daniel T.; Briggs, Christopher A.; Horne, Nicole M.; Kanter, Gerald D.; Karrick, Greg L.; Krikke, James J.; McCabe, Richard J.; Mustakis, Jason G.; Nanninga, Thomas N. (2004). "Development of a Scalable Process for CI-1034, an Endothelin Antagonist". Organic Process Research & Development. 8 (2): 201–212. doi:10.1021/op034104g.
  11. ^ Chinchilla, R.; Nájera, C. (2007). "The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry". Chem. Rev. 107 (3): 874–922. doi:10.1021/cr050992x. PMID 17305399.