The reverse of categorification is the process of decategorification. Decategorification is a systematic process by which isomorphic objects in a category are identified as equal. Whereas decategorification is a straightforward process, categorification is usually much less straightforward. In the representation theory of Lie algebras, modules over specific algebras are the principal objects of study, and there are several frameworks for what a categorification of such a module should be, e.g., so called (weak) abelian categorifications.[3]
Categorification and decategorification are not precise mathematical procedures, but rather a class of possible analogues. They are used in a similar way to the words like 'generalization', and not like 'sheafification'.[4]
Examples
edit
One form of categorification takes a structure described in terms of sets, and interprets the sets as isomorphism classes of objects in a category. For example, the set of natural numbers can be seen as the set of cardinalities of finite sets (and any two sets with the same cardinality are isomorphic). In this case, operations on the set of natural numbers, such as addition and multiplication, can be seen as carrying information about coproducts and products of the category of finite sets. Less abstractly, the idea here is that manipulating sets of actual objects, and taking coproducts (combining two sets in a union) or products (building arrays of things to keep track of large numbers of them) came first. Later, the concrete structure of sets was abstracted away – taken "only up to isomorphism", to produce the abstract theory of arithmetic. This is a "decategorification" – categorification reverses this step.
essentially following the character map from a favorite basis of the associated Grothendieck group to a representation-theoretic favorite basis of the ring of symmetric functions. This map reflects how the structures are similar; for example
Let be a ring which is free as an abelian group, and let be a basis of such that the multiplication is positive in , i.e.
with
Let be an -module. Then a (weak) abelian categorification of consists of an abelian category, an isomorphism , and exact endofunctors such that
the functor lifts the action of on the module , i.e. , and
there are isomorphisms , i.e. the composition decomposes as the direct sum of functors in the same way that the product decomposes as the linear combination of basis elements .
^Crane, Louis; Frenkel, Igor B. (1994-10-01). "Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases". Journal of Mathematical Physics. 35 (10): 5136–5154. arXiv:hep-th/9405183. doi:10.1063/1.530746. ISSN 0022-2488.
^Crane, Louis (1995-11-01). "Clock and category: Is quantum gravity algebraic?". Journal of Mathematical Physics. 36 (11): 6180–6193. arXiv:gr-qc/9504038. doi:10.1063/1.531240. ISSN 0022-2488.
^Khovanov, Mikhail; Mazorchuk, Volodymyr; Stroppel, Catharina (2009), "A brief review of abelian categorifications", Theory Appl. Categ., 22 (19): 479–508, arXiv:math.RT/0702746
^Alex Hoffnung (2009-11-10). "What precisely Is "Categorification"?".
Mazorchuk, Volodymyr (2010), Lectures on Algebraic Categorification, QGM Master Class Series, European Mathematical Society, arXiv:1011.0144, Bibcode:2010arXiv1011.0144M
Savage, Alistair (2014), Introduction to Categorification, arXiv:1401.6037, Bibcode:2014arXiv1401.6037S
Khovanov, Mikhail; Mazorchuk, Volodymyr; Stroppel, Catharina (2009), "A brief review of abelian categorifications", Theory Appl. Categ., 22 (19): 479–508, arXiv:math.RT/0702746
Further reading
edit
A blog post by one of the above authors (Baez): https://golem.ph.utexas.edu/category/2008/10/what_is_categorification.html.