Cavitation (elastomers)

Summary

Cavitation is the unstable unhindered expansion of a microscopic void in a solid elastomer under the action of tensile hydrostatic stresses. This can occur whenever the hydrostatic tension exceeds 5/6 of Young's modulus.[1]

The cavitation phenomenon may manifest in any of the following situations:

  • imposed hydrostatic tensile stress acting on a pre-existing void
  • void pressurization due to gases that are generated due to chemical action (as in volatilization of low-molecular weight waxes or oils: 'blowpoint' for insufficiently cured rubber, or 'thermal blowout' for systems operating at very high temperature)
  • void pressurization due to gases that come out of solution (as in gases dissolved at high pressure)

References edit

  1. ^ Gent, Alan N. (1990). "Cavitation in Rubber: A Cautionary Tale". Rubber Chemistry and Technology. 63 (3): 49–53. doi:10.5254/1.3538266.