Circle packing in a circle

Summary

Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible larger circle.

Table of solutions, 1 ≤ n ≤ 20 edit

If more than one equivalent solution exists, all are shown.[1]

Number of
unit circles
Enclosing circle radius Density Optimality Diagram
1 1 1.0000 Trivially optimal.  
2 2 0.5000 Trivially optimal.  
3   ≈ 2.154... 0.6466... Trivially optimal.  
4   ≈ 2.414... 0.6864... Trivially optimal.  
5   ≈ 2.701... 0.6854... Proved optimal by Graham
(1968)[2]
 
6 3 0.6666... Proved optimal by Graham
(1968)[2]
   
7 3 0.7777... Trivially optimal.  
8   ≈ 3.304... 0.7328... Proved optimal by Pirl
(1969)[3]
 
9   ≈ 3.613... 0.6895... Proved optimal by Pirl
(1969)[3]
 
10 3.813... 0.6878... Proved optimal by Pirl
(1969)[3]
 
11   ≈ 3.923... 0.7148... Proved optimal by Melissen
(1994)[4]
   
12 4.029... 0.7392... Proved optimal by Fodor
(2000)[5]
 
13   ≈ 4.236... 0.7245... Proved optimal by Fodor
(2003)[6]
   
14 4.328... 0.7474... Conjectured optimal by Goldberg
(1971).[7]
 
15   ≈ 4.521... 0.7339... Conjectured optimal by Pirl
(1969).[7]
 
16 4.615... 0.7512... Conjectured optimal by Goldberg
(1971).[7]
 
17 4.792... 0.7403... Conjectured optimal by Reis
(1975).[7]
 
18   ≈ 4.863... 0.7609... Conjectured optimal by Pirl (1969),
with additional arrangements by Graham, Lubachevsky, Nurmela, and Östergård (1998).[7]
   
   
   
   
   
19   ≈ 4.863... 0.8032... Proved optimal by Fodor
(1999)[8]
 
20 5.122... 0.7623... Conjectured optimal by Goldberg (1971).[7]  

Special cases edit

Only 26 optimal packings are thought to be rigid (with no circles able to "rattle"). Numbers in bold are prime:

  • Proven for n = 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 19
  • Conjectured for n = 14, 15, 16, 17, 18, 22, 23, 27, 30, 31, 33, 37, 61, 91

Of these, solutions for n = 2, 3, 4, 7, 19, and 37 achieve a packing density greater than any smaller number > 1. (Higher density records all have rattles.)[9]

See also edit

References edit

  1. ^ Friedman, Erich, "Circles in Circles", Erich's Packing Center, archived from the original on 2020-03-18
  2. ^ a b R.L. Graham, Sets of points with given minimum separation (Solution to Problem El921), Amer. Math. Monthly 75 (1968) 192-193.
  3. ^ a b c U. Pirl, Der Mindestabstand von n in der Einheitskreisscheibe gelegenen Punkten, Mathematische Nachrichten 40 (1969) 111-124.
  4. ^ H. Melissen, Densest packing of eleven congruent circles in a circle, Geometriae Dedicata 50 (1994) 15-25.
  5. ^ F. Fodor, The Densest Packing of 12 Congruent Circles in a Circle, Beiträge zur Algebra und Geometrie, Contributions to Algebra and Geometry 41 (2000) ?, 401–409.
  6. ^ F. Fodor, The Densest Packing of 13 Congruent Circles in a Circle, Beiträge zur Algebra und Geometrie, Contributions to Algebra and Geometry 44 (2003) 2, 431–440.
  7. ^ a b c d e f Graham RL, Lubachevsky BD, Nurmela KJ, Ostergard PRJ. Dense packings of congruent circles in a circle. Discrete Math 1998;181:139–154.
  8. ^ F. Fodor, The Densest Packing of 19 Congruent Circles in a Circle, Geom. Dedicata 74 (1999), 139–145.
  9. ^ Sloane, N. J. A. (ed.). "Sequence A084644". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.

External links edit

  • Mathematical analysis of 2D packing of circles (2022). H C Rajpoot from arXiv
  • "The best known packings of equal circles in a circle (complete up to N = 2600)"
  • "Online calculator for "How many circles can you get in order to minimize the waste?"