Classification theorem

Summary

In mathematics, a classification theorem answers the classification problem: "What are the objects of a given type, up to some equivalence?". It gives a non-redundant enumeration: each object is equivalent to exactly one class.

A few issues related to classification are the following.

  • The equivalence problem is "given two objects, determine if they are equivalent".
  • A complete set of invariants, together with which invariants are realizable, solves the classification problem, and is often a step in solving it. (A combination of invariant values is realizable if there in fact exists an object whose invariants take on the specified set of values)
  • A computable complete set of invariants[clarify] (together with which invariants are realizable) solves both the classification problem and the equivalence problem.
  • A canonical form solves the classification problem, and is more data: it not only classifies every class, but provides a distinguished (canonical) element of each class.

There exist many classification theorems in mathematics, as described below.

Geometry

edit

Algebra

edit

Linear algebra

edit

Analysis

edit

Dynamical systems

edit

Mathematical physics

edit

See also

edit

References

edit