Community resilience


Community resilience is the sustained ability of a community to use available resources (energy, communication, transportation, food, etc.) to respond to, withstand, and recover from adverse situations (e.g. economic collapse to global catastrophic risks).[1] This allows for the adaptation and growth of a community after disaster strikes.[2] Communities that are resilient are able to minimize any disaster, making the return to normal life as effortless as possible. By implementing a community resilience plan, a community can come together and overcome any disaster, while rebuilding physically and economically.[3][4]

Due to its high complexity the discussion on resilient societies has increasingly been considered from an inter- and transdisciplinary scope.

Around 2010 the French-speaking discourse coined the notion of collapsology (collapse science), discussing the resilience of societal systems and possible scenarios for societal transformations in the face of a variety of factors, such as dependence on fossil fuels, overpopulation, loss of biodiversity, and instability of the financial system. The controversial term was created by Pablo Servigne (an agricultural engineer) who, with Raphaël Stevens, wrote the book Comment tout peut s'effondrer (literally, "How everything can collapse").[5] Another, decidedly transdisciplinary approach which has been coined in late 2010s by German researcher Karim Fathi is the concept of "multiresilience" taking into account the fact that crises in the 21st century are interconnected, multi-dimensional and occurring on multiple system levels. Challenges such as the corona pandemic individuals, organisations, societies alike) and occur simultaneously, often even in interconnected and clustered forms.[6] From a cross-disciplinary perspective, Karim Fathi outlines five systemic principles contributing to increased collective intelligence, responsiveness and creativity of societies in the face of multiple crises occurring simultaneously.[7] Multiresilience is regarded as complementary to already established concepts for assessing and promoting societal resilience potentials. At the same time it criticises the fact that societal resilience has so far always been discussed from a mono-crisis persperctive. According to Karim Fathi, this onesided perspective" proves to be inadequate in terms of complexity, as societies in the 21st century have to deal with many global challenges - so-called „crisis-bundles“ - in the same time. Multiresilience aims to build up "basic robustness" in the sense of higher collective intelligence, which makes societies more capable of anticipating, reacting and solving problems in different crisis contexts.[6]

Community resilience planning

A community resilience plan is an action plan that allows for a community to rebuild after disaster. The plan should entail specific guidelines that will aid the community to rebuild both the economy and the ecosystem that the community thrives on. This typically means there are measures in place that a community will follow, such as the distribution of volunteers, and the access to knowledge and resources necessary to rebuild. Adaptability is a key attribute which means prevention can occur in response or before disaster strikes. The National Institute of Standards and Technology has a Community Resilience department tasked with solving this problem.[8] This agency has created a Community Resilience Planning Guide, and its aim is to assist communities with anticipating challenges through a practical application that takes into account the social needs of the community as well as dependencies on the "built environment" - buildings and infrastructure systems.[9] The outline of the six step process is shown below:

  • Six-step process
    1. Form a collaborative planning team
    2. Understand the situation
    3. Determine the goals and objectives
    4. Plan development
    5. Plan preparation, review, and approval
    6. Plan implementation and maintenance

Classification of hazards

The scope of community resilience extends beyond natural disasters and include manmade events.[10] Below are an example of disasters communities face on a daily basis:

  1. Wind (hurricane, tornados)
  2. Earthquake (landslides, liquefaction)
  3. Inundation (flooding, coastal erosion)
  4. Fire (natural, manmade)
  5. Snow or rain (blizzards, tsunami)
  6. Technological or human-caused (cyberwarfare, nuclear weapons)
  • Routine
Hazard events that occur regularly and are typically less consequential events in terms of damage and recovery.
  • Design
Hazard events that structures must be designed to withstand and often includes many natural disasters.
  • Extreme
Hazard events may also found in building codes for some hazards; however, they are likely to cause significant and often irreparable damage.

Dependencies and cascading failures

Infrastructure systems such as buildings, water, electric power, transportation, and communication are all interconnected and interdependent networks or systems.[11] This means that a failure in one network can have catastrophic impact on another system. When Hurricane Katrina hit New Orleans, LA on August 23, 2005, it caused network outages in transportation and power networks which led to system failure and impedance in others such communication and emergency services.

For specific issues

Climate change

Climate resilience can be generally defined as the adaptive capacity for a socio-ecological system to: (1) absorb stresses and maintain function in the face of external stresses imposed upon it by climate change and (2) adapt, reorganize, and evolve into more desirable configurations that improve the sustainability of the system, leaving it better prepared for future climate change impacts.[12][13]

With the rising awareness of climate change impacts by both national and international bodies, building climate resilience has become a major goal for these institutions. The key focus of climate resilience efforts is to address the climate vulnerability that communities, states, and countries currently have with regards to the many consequences of climate change.[14] Currently, climate resilience efforts encompass social, economic, technological, and political strategies that are being implemented at all scales of society. From local community action to global treaties, addressing climate resilience is becoming a priority, although it could be argued that a significant amount of the theory has yet to be translated into practice. Despite this, there is a robust and ever-growing movement fueled by local and national bodies alike geared towards building and improving climate resilience.

See also


  1. ^ Bosher, Lee; Chmutina, Ksenia (April 3, 2017). Disaster Risk Reduction for the Built Environment. 111 River Street. Hoboken, NJ 07030: John Wiley & Sons. p. 32. ISBN 9781118921500.CS1 maint: location (link)
  2. ^ Fran H., Norris; Susan P., Stevens (March 2008). "Community Resilience as a Metaphor, Theory, Set of Capacities, and Strategy for Disaster Readiness". American Journal of Community Psychology. 41 (1–2): 127–150. doi:10.1007/s10464-007-9156-6. PMID 18157631. S2CID 45612103.
  3. ^ Sharifi, Ayyoob (October 2016). "A critical review of selected tools for assessing community resilience". Ecological Indicators. 69: 629–647. doi:10.1016/j.ecolind.2016.05.023.
  4. ^ Sharifi, Ayyoob; Yamagata, Yoshiki (September 2016). "On the suitability of assessment tools for guiding communities towards disaster resilience". International Journal of Disaster Risk Reduction. 18: 115–124. doi:10.1016/j.ijdrr.2016.06.006.
  5. ^ "Pablo Servigne: "Je défends un catastrophisme positif"". Usbek & Rica (in French). 2016-08-10. Retrieved 2020-02-03.
  6. ^ a b Karim Fathi: Die multi-resiliente Gesellschaft: Ansatzpunkte für die Corona-Krise und darüber hinaus. In: Forschungsjournal Soziale Bewegungen, Vol. 33, Issue 1, 2020.[1]
  7. ^ Karim Fathi: Resilienz im Spannungsfeld zwischen Nachhaltigkeit und Entwicklung - gesellschaftliche Zukunftssicherung im 21. Jahrhundert. Springer, 2019
  8. ^
  9. ^
  10. ^ Patel, Sonny S.; Rogers, M. Brooke; Amlôt, Richard; Rubin, G. James (February 2017). "What Do We Mean by 'Community Resilience'? A Systematic Literature Review of How It Is Defined in the Literature". PLOS Currents: Disasters. 1. doi:10.1371/currents.dis.db775aff25efc5ac4f0660ad9c9f7db2 (inactive 31 October 2021). PMC 5693357. PMID 29188132.CS1 maint: DOI inactive as of October 2021 (link)
  11. ^ Guidotti, Roberto; Chmielewski, Hana (September 2016). "Modeling the resilience of critical infrastructure: the role of network dependencies". Sustainable and Resilient Infrastructure. 1 (3–4): 153–159. doi:10.1080/23789689.2016.1254999. PMC 5557302. PMID 28825037.
  12. ^ Folke, C (2006). "Resilience: The emergence of a perspective for social-ecological systems analyses". Global Environmental Change. 16 (3): 253–267. doi:10.1016/j.gloenvcha.2006.04.002.
  13. ^ Nelson, Donald R.; Adger, W. Neil; Brown, Katrina (2007). "Adaptation to Environmental Change: Contributions of a Resilience Framework". Annual Review of Environment and Resources. 32: 395–419. doi:10.1146/
  14. ^ Venema, Hank, and Jennifer Temmer. “Building a Climate-Resilient City: The Built Environment.” International Institute for Sustainable Development, 2017.

External links

  • NIST Community Resilience
  • NIST Community Resilience Planning Guide
  • Resilient US website
  • RAND website
  • RAND tools