BREAKING NEWS
Contracted Bianchi identities

## Summary

In general relativity and tensor calculus, the contracted Bianchi identities are:[1]

${\displaystyle \nabla _{\rho }{R^{\rho }}_{\mu }={1 \over 2}\nabla _{\mu }R}$

where ${\displaystyle {R^{\rho }}_{\mu }}$ is the Ricci tensor, ${\displaystyle R}$ the scalar curvature, and ${\displaystyle \nabla _{\rho }}$ indicates covariant differentiation.

These identities are named after Luigi Bianchi, although they had been already derived by Aurel Voss in 1880.[2] In the Einstein field equations, the contracted Bianchi identity ensures consistency with the vanishing divergence of the matter stress–energy tensor.

## Proof

Start with the Bianchi identity[3]

${\displaystyle R_{abmn;\ell }+R_{ab\ell m;n}+R_{abn\ell ;m}=0.}$

Contract both sides of the above equation with a pair of metric tensors:

${\displaystyle g^{bn}g^{am}(R_{abmn;\ell }+R_{ab\ell m;n}+R_{abn\ell ;m})=0,}$
${\displaystyle g^{bn}(R^{m}{}_{bmn;\ell }-R^{m}{}_{bm\ell ;n}+R^{m}{}_{bn\ell ;m})=0,}$
${\displaystyle g^{bn}(R_{bn;\ell }-R_{b\ell ;n}-R_{b}{}^{m}{}_{n\ell ;m})=0,}$
${\displaystyle R^{n}{}_{n;\ell }-R^{n}{}_{\ell ;n}-R^{nm}{}_{n\ell ;m}=0.}$

The first term on the left contracts to yield a Ricci scalar, while the third term contracts to yield a mixed Ricci tensor,

${\displaystyle R_{;\ell }-R^{n}{}_{\ell ;n}-R^{m}{}_{\ell ;m}=0.}$

The last two terms are the same (changing dummy index n to m) and can be combined into a single term which shall be moved to the right,

${\displaystyle R_{;\ell }=2R^{m}{}_{\ell ;m},}$

which is the same as

${\displaystyle \nabla _{m}R^{m}{}_{\ell }={1 \over 2}\nabla _{\ell }R.}$

Swapping the index labels l and m on the left side yields

${\displaystyle \nabla _{\ell }R^{\ell }{}_{m}={1 \over 2}\nabla _{m}R.}$

## Notes

1. ^ Bianchi, Luigi (1902), "Sui simboli a quattro indici e sulla curvatura di Riemann", Rend. Acc. Naz. Lincei (in Italian), 11 (5): 3–7
2. ^ Voss, A. (1880), "Zur Theorie der Transformation quadratischer Differentialausdrücke und der Krümmung höherer Mannigfaltigketien", Mathematische Annalen, 16 (2): 129–178, doi:10.1007/bf01446384, S2CID 122828265
3. ^ Synge J.L., Schild A. (1949). Tensor Calculus. pp. 87–89–90.

## References

• Lovelock, David; Hanno Rund (1989) [1975]. Tensors, Differential Forms, and Variational Principles. Dover. ISBN 978-0-486-65840-7.
• Synge J.L., Schild A. (1949). Tensor Calculus. first Dover Publications 1978 edition. ISBN 978-0-486-63612-2.
• J.R. Tyldesley (1975), An introduction to Tensor Analysis: For Engineers and Applied Scientists, Longman, ISBN 0-582-44355-5
• D.C. Kay (1988), Tensor Calculus, Schaum’s Outlines, McGraw Hill (USA), ISBN 0-07-033484-6
• T. Frankel (2012), The Geometry of Physics (3rd ed.), Cambridge University Press, ISBN 978-1107-602601