Covariant formulation of classical electromagnetism
Summary
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.[a]
Covariant objects
edit
Preliminary four-vectors
edit
Lorentz tensors of the following kinds may be used in this article to describe bodies or particles:
The electromagnetic tensor is the combination of the electric and magnetic fields into a covariant antisymmetric tensor whose entries are B-field quantities.[1]
and the result of raising its indices is
where E is the electric field, B the magnetic field, and c the speed of light.
The differential of the electromagnetic potential is
In the language of differential forms, which provides the generalisation to curved spacetimes, these are the components of a 1-form and a 2-form respectively. Here, is the exterior derivative and the wedge product.
The electromagnetic field tensor F constructs the electromagnetic stress–energy tensor T by the equation:[2]
where η is the Minkowski metric tensor (with signature (+ − − −)). Notice that we use the fact that
which is predicted by Maxwell's equations.
Maxwell's equations in vacuum
edit
In vacuum (or for the microscopic equations, not including macroscopic material descriptions), Maxwell's equations can be written as two tensor equations.
The two inhomogeneous Maxwell's equations, Gauss's Law and Ampère's law (with Maxwell's correction) combine into (with (+ − − −) metric):[3]
Each of these tensor equations corresponds to four scalar equations, one for each value of β.
Using the antisymmetric tensor notation and comma notation for the partial derivative (see Ricci calculus), the second equation can also be written more compactly as:
In the absence of sources, Maxwell's equations reduce to:
which is an electromagnetic wave equation in the field strength tensor.
Maxwell's equations in the Lorenz gauge
edit
The Lorenz gauge condition is a Lorentz-invariant gauge condition. (This can be contrasted with other gauge conditions such as the Coulomb gauge, which if it holds in one inertial frame will generally not hold in any other.) It is expressed in terms of the four-potential as follows:
In the Lorenz gauge, the microscopic Maxwell's equations can be written as:
Electromagnetic (EM) fields affect the motion of electrically charged matter: due to the Lorentz force. In this way, EM fields can be detected (with applications in particle physics, and natural occurrences such as in aurorae). In relativistic form, the Lorentz force uses the field strength tensor as follows.[4]
Expressed in terms of coordinate timet, it is:
where pα is the four-momentum, q is the charge, and xβ is the position.
Expressed in frame-independent form, we have the four-force
where uβ is the four-velocity, and τ is the particle's proper time, which is related to coordinate time by dt = γdτ.
The density of force due to electromagnetism, whose spatial part is the Lorentz force, is given by
and is related to the electromagnetic stress–energy tensor by
Using the Maxwell equations, one can see that the electromagnetic stress–energy tensor (defined above) satisfies the following differential equation, relating it to the electromagnetic tensor and the current four-vector
or
which expresses the conservation of linear momentum and energy by electromagnetic interactions.
Covariant objects in matter
edit
Free and bound four-currents
edit
In order to solve the equations of electromagnetism given here, it is necessary to add information about how to calculate the electric current, Jν. Frequently, it is convenient to separate the current into two parts, the free current and the bound current, which are modeled by different equations;
where
The bound current is derived from the P and M fields which form an antisymmetric contravariant magnetization-polarization tensor
[1][5][6][7]
which determines the bound current
Electric displacement tensor
edit
If this is combined with Fμν we get the antisymmetric contravariant electromagnetic displacement tensor which combines the D and H fields as follows:
The three field tensors are related by:
which is equivalent to the definitions of the D and H fields given above.
The bound current and free current as defined above are automatically and separately conserved
Constitutive equations
edit
Vacuum
edit
In vacuum, the constitutive relations between the field tensor and displacement tensor are:
Antisymmetry reduces these 16 equations to just six independent equations. Because it is usual to define Fμν by
the constitutive equations may, in vacuum, be combined with the Gauss–Ampère law to get:
The electromagnetic stress–energy tensor in terms of the displacement is:
where δαπ is the Kronecker delta. When the upper index is lowered with η, it becomes symmetric and is part of the source of the gravitational field.
Linear, nondispersive matter
edit
Thus we have reduced the problem of modeling the current, Jν to two (hopefully) easier problems — modeling the free current, Jνfree and modeling the magnetization and polarization, . For example, in the simplest materials at low frequencies, one has
where one is in the instantaneously comoving inertial frame of the material, σ is its electrical conductivity, χe is its electric susceptibility, and χm is its magnetic susceptibility.
The constitutive relations between the and F tensors, proposed by Minkowski for a linear materials (that is, E is proportional to D and B proportional to H), are:
where u is the four-velocity of material, ε and μ are respectively the proper permittivity and permeability of the material (i.e. in rest frame of material), and denotes the Hodge star operator.
Lagrangian for classical electrodynamics
edit
Vacuum
edit
The Lagrangian density for classical electrodynamics is composed by two components: a field component and a source component:
In the interaction term, the four-current should be understood as an abbreviation of many terms expressing the electric currents of other charged fields in terms of their variables; the four-current is not itself a fundamental field.
The Lagrange equations for the electromagnetic lagrangian density can be stated as follows:
Noting
the expression inside the square bracket is
The second term is
Therefore, the electromagnetic field's equations of motion are
which is the Gauss–Ampère equation above.
Matter
edit
Separating the free currents from the bound currents, another way to write the Lagrangian density is as follows:
Using Lagrange equation, the equations of motion for can be derived.
^
This article uses the classical treatment of tensors and Einstein summation convention throughout and the Minkowski metric has the form diag(+1, −1, −1, −1). Where the equations are specified as holding in vacuum, one could instead regard them as the formulation of Maxwell's equations in terms of total charge and current.
References
edit
^ ab
Vanderlinde, Jack (2004), classical electromagnetic theory, Springer, pp. 313–328, ISBN 9781402026997
^Classical Electrodynamics by Jackson, 3rd Edition, Chapter 11 Special Theory of Relativity
^The assumption is made that no forces other than those originating in E and B are present, that is, no gravitational, weak or strong forces.
^However, the assumption that , , and even , are relativistic tensors in a polarizable medium, is without foundation. The quantityis not a four vector in a polarizable medium, so does not produce a tensor.
^
Franklin, Jerrold, Can electromagnetic fields form tensors in a polarizable medium?
^Gonano, Carlo, Definition for Polarization P and Magnetization M Fully Consistent with Maxwell's Equations
Further reading
edit
The Feynman Lectures on Physics Vol. II Ch. 25: Electrodynamics in Relativistic Notation
Einstein, A. (1961). Relativity: The Special and General Theory. New York: Crown. ISBN 0-517-02961-8.
Misner, Charles; Thorne, Kip S.; Wheeler, John Archibald (1973). Gravitation. San Francisco: W. H. Freeman. ISBN 0-7167-0344-0.
Landau, L. D.; Lifshitz, E. M. (1975). Classical Theory of Fields (Fourth Revised English ed.). Oxford: Pergamon. ISBN 0-08-018176-7.
R. P. Feynman; F. B. Moringo; W. G. Wagner (1995). Feynman Lectures on Gravitation. Addison-Wesley. ISBN 0-201-62734-5.