In the mathematical field of graph theory, a distance-regular graph is a regular graph such that for any two verticesv and w, the number of vertices at distancej from v and at distance k from w depends only upon j, k, and the distance between v and w.
Some authors exclude the complete graphs and disconnected graphs from this definition.
Every distance-transitive graph is distance-regular. Indeed, distance-regular graphs were introduced as a combinatorial generalization of distance-transitive graphs, having the numerical regularity properties of the latter without necessarily having a large automorphism group.
Intersection arrays
edit
The intersection array of a distance-regular graph is the array in which is the diameter of the graph and for each , gives the number of neighbours of at distance from and gives the number of neighbours of at distance from for any pair of vertices and at distance . There is also the number that gives the number of neighbours of at distance from . The numbers are called the intersection numbers of the graph. They satisfy the equation where is the valency, i.e., the number of neighbours, of any vertex.
It turns out that a graph of diameter is distance regular if and only if it has an intersection array in the preceding sense.
Cospectral and disconnected distance-regular graphs
edit
A pair of connected distance-regular graphs are cospectral if their adjacency matrices have the same spectrum. This is equivalent to their having the same intersection array.
A distance-regular graph is disconnected if and only if it is a disjoint union of cospectral distance-regular graphs.
Properties
edit
Suppose is a connected distance-regular graph of valency with intersection array . For each let denote the number of vertices at distance from any given vertex and let denote the -regular graph with adjacency matrix formed by relating pairs of vertices on at distance .
Graph-theoretic properties
edit
for all .
and .
Spectral properties
edit
has distinct eigenvalues.
The only simple eigenvalue of is or both and if is bipartite.
for any eigenvalue multiplicity of unless is a complete multipartite graph.
for any eigenvalue multiplicity of unless is a cycle graph or a complete multipartite graph.
There are only finitely many distinct connected distance-regular graphs of any given valency .[1]
Similarly, there are only finitely many distinct connected distance-regular graphs with any given eigenvalue multiplicity [2] (with the exception of the complete multipartite graphs).
Cubic distance-regular graphs
edit
The cubic distance-regular graphs have been completely classified.
^Bang, S.; Dubickas, A.; Koolen, J. H.; Moulton, V. (2015-01-10). "There are only finitely many distance-regular graphs of fixed valency greater than two". Advances in Mathematics. 269 (Supplement C): 1–55. arXiv:0909.5253. doi:10.1016/j.aim.2014.09.025. S2CID 18869283.
^Godsil, C. D. (1988-12-01). "Bounding the diameter of distance-regular graphs". Combinatorica. 8 (4): 333–343. doi:10.1007/BF02189090. ISSN 0209-9683. S2CID 206813795.
Further reading
edit
Godsil, C. D. (1993). Algebraic Combinatorics. Chapman and Hall Mathematics Series. New York: Chapman and Hall. ISBN 978-0-412-04131-0. MR 1220704.