A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function.
Definition
edit
The sum of positive divisors functionσz(n), for a real or complex number z, is defined as the sum of the zth powers of the positive divisors of n. It can be expressed in sigma notation as
where is shorthand for "ddividesn".
The notations d(n), ν(n) and τ(n) (for the German Teiler = divisors) are also used to denote σ0(n), or the number-of-divisors function[1][2] (OEIS: A000005). When z is 1, the function is called the sigma function or sum-of-divisors function,[1][3] and the subscript is often omitted, so σ(n) is the same as σ1(n) (OEIS: A000203).
The aliquot sums(n) of n is the sum of the proper divisors (that is, the divisors excluding n itself, OEIS: A001065), and equals σ1(n) − n; the aliquot sequence of n is formed by repeatedly applying the aliquot sum function.
Example
edit
For example, σ0(12) is the number of the divisors of 12:
while σ1(12) is the sum of all the divisors:
and the aliquot sum s(12) of proper divisors is:
σ−1(n) is sometimes called the abundancy index of n, and we have:
because by definition, the factors of a prime number are 1 and itself. Also, where pn# denotes the primorial,
since n prime factors allow a sequence of binary selection ( or 1) from n terms for each proper divisor formed. However, these are not in general the smallest numbers whose number of divisors is a power of two; instead, the smallest such number may be obtained by multiplying together the first nFermi–Dirac primes, prime powers whose exponent is a power of two.[4]
Clearly, for all , and for all , .
The divisor function is multiplicative (since each divisor c of the product mn with distinctively correspond to a divisor a of m and a divisor b of n), but not completely multiplicative:
This result can be directly deduced from the fact that all divisors of are uniquely determined by the distinct tuples of integers with (i.e. independent choices for each ).
For example, if n is 24, there are two prime factors (p1 is 2; p2 is 3); noting that 24 is the product of 23×31, a1 is 3 and a2 is 1. Thus we can calculate as so:
The eight divisors counted by this formula are 1, 2, 4, 8, 3, 6, 12, and 24.
where if it occurs and for , and are consecutive pairs of generalized pentagonal numbers (OEIS: A001318, starting at offset 1). Indeed, Euler proved this by logarithmic differentiation of the identity in his pentagonal number theorem.
For a non-square integer, n, every divisor, d, of n is paired with divisor n/d of n and is even; for a square integer, one divisor (namely ) is not paired with a distinct divisor and is odd. Similarly, the number is odd if and only if n is a square or twice a square.[9]
We also note s(n) = σ(n) − n. Here s(n) denotes the sum of the proper divisors of n, that is, the divisors of n excluding n itself. This function is used to recognize perfect numbers, which are the n such that s(n) = n. If s(n) > n, then n is an abundant number, and if s(n) < n, then n is a deficient number.
If n is a power of 2, , then and , which makes nalmost-perfect.
holds for all sufficiently large n (Ramanujan 1997). The largest known value that violates the inequality is n=5040. In 1984, Guy Robin proved that the inequality is true for all n > 5040 if and only if the Riemann hypothesis is true (Robin 1984). This is Robin's theorem and the inequality became known after him. Robin furthermore showed that if the Riemann hypothesis is false then there are an infinite number of values of n that violate the inequality, and it is known that the smallest such n > 5040 must be superabundant (Akbary & Friggstad 2009). It has been shown that the inequality holds for large odd and square-free integers, and that the Riemann hypothesis is equivalent to the inequality just for n divisible by the fifth power of a prime (Choie et al. 2007).
Robin also proved, unconditionally, that the inequality:
holds for all n ≥ 3.
A related bound was given by Jeffrey Lagarias in 2002, who proved that the Riemann hypothesis is equivalent to the statement that:
^Ramanujan, S. (1915), "Highly Composite Numbers", Proceedings of the London Mathematical Society, s2-14 (1): 347–409, doi:10.1112/plms/s2_14.1.347; see section 47, pp. 405–406, reproduced in Collected Papers of Srinivasa Ramanujan, Cambridge Univ. Press, 2015, pp. 124–125
Akbary, Amir; Friggstad, Zachary (2009), "Superabundant numbers and the Riemann hypothesis" (PDF), American Mathematical Monthly, 116 (3): 273–275, doi:10.4169/193009709X470128, archived from the original (PDF) on 2014-04-11.
Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001
Bach, Eric; Shallit, Jeffrey, Algorithmic Number Theory, volume 1, 1996, MIT Press. ISBN 0-262-02405-5, see page 234 in section 8.8.
Caveney, Geoffrey; Nicolas, Jean-Louis; Sondow, Jonathan (2011), "Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis" (PDF), INTEGERS: The Electronic Journal of Combinatorial Number Theory, 11: A33, arXiv:1110.5078, Bibcode:2011arXiv1110.5078C
Choie, YoungJu; Lichiardopol, Nicolas; Moree, Pieter; Solé, Patrick (2007), "On Robin's criterion for the Riemann hypothesis", Journal de théorie des nombres de Bordeaux, 19 (2): 357–372, arXiv:math.NT/0604314, doi:10.5802/jtnb.591, ISSN 1246-7405, MR 2394891, S2CID 3207238, Zbl 1163.11059
Gioia, A. A.; Vaidya, A. M. (1967), "Amicable numbers with opposite parity", The American Mathematical Monthly, 74 (8): 969–973, doi:10.2307/2315280, JSTOR 2315280, MR 0220659
Grönwall, Thomas Hakon (1913), "Some asymptotic expressions in the theory of numbers", Transactions of the American Mathematical Society, 14: 113–122, doi:10.1090/S0002-9947-1913-1500940-6
Ivić, Aleksandar (1985), The Riemann zeta-function. The theory of the Riemann zeta-function with applications, A Wiley-Interscience Publication, New York etc.: John Wiley & Sons, pp. 385–440, ISBN 0-471-80634-X, Zbl 0556.10026
Long, Calvin T. (1972), Elementary Introduction to Number Theory (2nd ed.), Lexington: D. C. Heath and Company, LCCN 77171950
Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), Elements of Number Theory, Englewood Cliffs: Prentice Hall, LCCN 77081766
Ramanujan, Srinivasa (1997), "Highly composite numbers, annotated by Jean-Louis Nicolas and Guy Robin", The Ramanujan Journal, 1 (2): 119–153, doi:10.1023/A:1009764017495, ISSN 1382-4090, MR 1606180, S2CID 115619659
Robin, Guy (1984), "Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann", Journal de Mathématiques Pures et Appliquées, Neuvième Série, 63 (2): 187–213, ISSN 0021-7824, MR 0774171
Williams, Kenneth S. (2011), Number theory in the spirit of Liouville, London Mathematical Society Student Texts, vol. 76, Cambridge: Cambridge University Press, ISBN 978-0-521-17562-3, Zbl 1227.11002
Elementary Evaluation of Certain Convolution Sums Involving Divisor Functions PDF of a paper by Huard, Ou, Spearman, and Williams. Contains elementary (i.e. not relying on the theory of modular forms) proofs of divisor sum convolutions, formulas for the number of ways of representing a number as a sum of triangular numbers, and related results.