Domain of a function

Summary

In mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by or , where f is the function.

A function f from X to Y. The set of points in the red oval X is the domain of f.
Graph of the real-valued square root function, f(x) = x, whose domain consists of all nonnegative real numbers

More precisely, given a function , the domain of f is X. Note that in modern mathematical language, the domain is part of the definition of a function rather than a property of it.

In the special case that X and Y are both subsets of , the function f can be graphed in the Cartesian coordinate system. In this case, the domain is represented on the x-axis of the graph, as the projection of the graph of the function onto the x-axis.

For a function , the set Y is called the codomain, and the set of values attained by the function (which is a subset of Y) is called its range or image.

Any function can be restricted to a subset of its domain. The restriction of to , where , is written as .

Natural domainEdit

If a real function f is given by a formula, it may be not defined for some values of the variable. In this case, it is a partial function, and the set of real numbers on which the formula can be evaluated to a real number is called the natural domain or domain of definition of f. In many contexts, a partial function is called simply a function, and its natural domain is called simply its domain.

ExamplesEdit

  • The function   defined by   cannot be evaluated at 0. Therefore the natural domain of   is the set of real numbers excluding 0, which can be denoted by   or  .
  • The piecewise function   defined by   has as its natural domain the set   of real numbers.
  • The square root function   has as its natural domain the set of non-negative real numbers, which can be denoted by  , the interval  , or  .
  • The tangent function, denoted  , has as its natural domain the set of all real numbers which are not of the form   for some integer  , which can be written as  .

Other usesEdit

The word "domain" is used with other related meanings in some areas of mathematics. In topology, a domain is a connected open set.[1] In real and complex analysis, a domain is an open connected subset of a real or complex vector space. In the study of partial differential equations, a domain is the open connected subset of the Euclidean space   where a problem is posed (i.e., where the unknown function(s) are defined).

Set theoretical notionsEdit

For example, it is sometimes convenient in set theory to permit the domain of a function to be a proper class X, in which case there is formally no such thing as a triple (X, Y, G). With such a definition, functions do not have a domain, although some authors still use it informally after introducing a function in the form f: XY.[2]

See alsoEdit

NotesEdit

  1. ^ Weisstein, Eric W. "Domain". mathworld.wolfram.com. Retrieved 2020-08-28.
  2. ^ Eccles 1997, p. 91 (quote 1, quote 2); Mac Lane 1998, p. 8; Mac Lane, in Scott & Jech 1967, p. 232; Sharma 2004, p. 91; Stewart & Tall 1977, p. 89

ReferencesEdit

  • Bourbaki, Nicolas (1970). Théorie des ensembles. Éléments de mathématique. Springer. ISBN 9783540340348.