Double Mersenne number

Summary

In mathematics, a double Mersenne number is a Mersenne number of the form

where p is prime.

Examples edit

The first four terms of the sequence of double Mersenne numbers are[1] (sequence A077586 in the OEIS):

 
 
 
 

Double Mersenne primes edit

Double Mersenne primes
No. of known terms4
Conjectured no. of terms4
First terms7, 127, 2147483647
Largest known term170141183460469231731687303715884105727
OEIS index
  • A077586
  • a(n) = 2^(2^prime(n) − 1) − 1

A double Mersenne number that is prime is called a double Mersenne prime. Since a Mersenne number Mp can be prime only if p is prime, (see Mersenne prime for a proof), a double Mersenne number   can be prime only if Mp is itself a Mersenne prime. For the first values of p for which Mp is prime,   is known to be prime for p = 2, 3, 5, 7 while explicit factors of   have been found for p = 13, 17, 19, and 31.

      factorization of  
2 3 prime 7
3 7 prime 127
5 31 prime 2147483647
7 127 prime 170141183460469231731687303715884105727
11 not prime not prime 47 × 131009 × 178481 × 724639 × 2529391927 × 70676429054711 × 618970019642690137449562111 × ...
13 8191 not prime 338193759479 × 210206826754181103207028761697008013415622289 × ...
17 131071 not prime 231733529 × 64296354767 × ...
19 524287 not prime 62914441 × 5746991873407 × 2106734551102073202633922471 × 824271579602877114508714150039 × 65997004087015989956123720407169 × ...
23 not prime not prime 2351 × 4513 × 13264529 × 76899609737 × ...
29 not prime not prime 1399 × 2207 × 135607 × 622577 × 16673027617 × 4126110275598714647074087 × ...
31 2147483647 not prime 295257526626031 × 87054709261955177 × 242557615644693265201 × 178021379228511215367151 × ...
37 not prime not prime
41 not prime not prime
43 not prime not prime
47 not prime not prime
53 not prime not prime
59 not prime not prime
61 2305843009213693951 unknown

Thus, the smallest candidate for the next double Mersenne prime is  , or 22305843009213693951 − 1. Being approximately 1.695×10694127911065419641, this number is far too large for any currently known primality test. It has no prime factor below 1 × 1036.[2] There are probably no other double Mersenne primes than the four known.[1][3]

Smallest prime factor of   (where p is the nth prime) are

7, 127, 2147483647, 170141183460469231731687303715884105727, 47, 338193759479, 231733529, 62914441, 2351, 1399, 295257526626031, 18287, 106937, 863, 4703, 138863, 22590223644617, ... (next term is > 1 × 1036) (sequence A309130 in the OEIS)

Catalan–Mersenne number conjecture edit

The recursively defined sequence

 
 

is called the sequence of Catalan–Mersenne numbers.[4] The first terms of the sequence (sequence A007013 in the OEIS) are:

 
 
 
 
 
 

Catalan discovered this sequence after the discovery of the primality of   by Lucas in 1876.[1][5] Catalan conjectured that they are prime "up to a certain limit". Although the first five terms are prime, no known methods can prove that any further terms are prime (in any reasonable time) simply because they are too huge. However, if   is not prime, there is a chance to discover this by computing   modulo some small prime   (using recursive modular exponentiation). If the resulting residue is zero,   represents a factor of   and thus would disprove its primality. Since   is a Mersenne number, such a prime factor   would have to be of the form  . Additionally, because   is composite when   is composite, the discovery of a composite term in the sequence would preclude the possibility of any further primes in the sequence.

In popular culture edit

In the Futurama movie The Beast with a Billion Backs, the double Mersenne number   is briefly seen in "an elementary proof of the Goldbach conjecture". In the movie, this number is known as a "martian prime".

See also edit

References edit

  1. ^ a b c Chris Caldwell, Mersenne Primes: History, Theorems and Lists at the Prime Pages.
  2. ^ "Double Mersenne 61 factoring status". www.doublemersennes.org. Retrieved 31 March 2022.
  3. ^ I. J. Good. Conjectures concerning the Mersenne numbers. Mathematics of Computation vol. 9 (1955) p. 120-121 [retrieved 2012-10-19]
  4. ^ Weisstein, Eric W. "Catalan-Mersenne Number". MathWorld.
  5. ^ "Questions proposées". Nouvelle correspondance mathématique. 2: 94–96. 1876. (probably collected by the editor). Almost all of the questions are signed by Édouard Lucas as is number 92:

    Prouver que 261 − 1 et 2127 − 1 sont des nombres premiers. (É. L.) (*).

    The footnote (indicated by the star) written by the editor Eugène Catalan, is as follows:

    (*) Si l'on admet ces deux propositions, et si l'on observe que 22 − 1, 23 − 1, 27 − 1 sont aussi des nombres premiers, on a ce théorème empirique: Jusqu'à une certaine limite, si 2n − 1 est un nombre premier p, 2p − 1 est un nombre premier p', 2p' − 1 est un nombre premier p", etc. Cette proposition a quelque analogie avec le théorème suivant, énoncé par Fermat, et dont Euler a montré l'inexactitude: Si n est une puissance de 2, 2n + 1 est un nombre premier. (E. C.)

Further reading edit

External links edit

  • Weisstein, Eric W. "Double Mersenne Number". MathWorld.
  • Tony Forbes, A search for a factor of MM61 Archived 2009-02-08 at the Wayback Machine.
  • Status of the factorization of double Mersenne numbers
  • Double Mersennes Prime Search
  • Operazione Doppi Mersennes