ERCC5

Summary

DNA repair protein complementing XP-G cells is a protein that in humans is encoded by the ERCC5 gene.[5][6]

ERCC5
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesERCC5, COFS3, ERCM2, UVDR, XPG, XPGC, ERCC5-201, excision repair cross-complementation group 5, ERCC excision repair 5, endonuclease
External IDsOMIM: 133530 MGI: 103582 HomoloGene: 133551 GeneCards: ERCC5
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000123

NM_011729

RefSeq (protein)

NP_000114

n/a

Location (UCSC)Chr 13: 102.85 – 102.88 MbChr 1: 44.19 – 44.22 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function edit

Excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G) is involved in excision repair of UV-induced DNA damage. Mutations cause Cockayne syndrome, which is characterized by severe growth defects, mental retardation, and cachexia. Multiple alternatively spliced transcript variants encoding distinct isoforms have been described, but the biological validity of all variants has not been determined.[6]

Mutations in ERCC5 cause arthrogryposis.[7]

XPG is a structure specific endonuclease that incises DNA at the 3’ side of the damaged nucleotide during nucleotide excision repair.

Syndromes edit

Mutational defects in the Ercc5(Xpg) gene can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or in combination with the severe neurodevelopmental disorder Cockayne syndrome (CS) or the infantile lethal cerebro-oculo-facio-skeletal syndrome.[8]

Mouse model edit

An Ercc5(Xpg) mutant mouse model presented features of premature aging including cachexia and osteoporosis with pronounced degenerative phenotypes in both liver and brain.[8] These mutant mice developed a multi-system premature aging degenerative phenotype that appears to strengthen the link between DNA damage and aging.[8] (see DNA damage theory of aging).

Dietary restriction, which extends lifespan of wild-type mice, also substantially increased the lifespan of Ercc5(Xpg) mutant mice.[9] Dietary restriction of the mutant mice, while delaying aging, also appeared to slow the accumulation of genome wide DNA damage and to preserve transcriptional output, thus contributing to improved cell viability.

Interactions edit

ERCC5 has been shown to interact with ERCC2.[10]

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000134899 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000026048 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Samec S, Jones TA, Corlet J, Scherly D, Sheer D, Wood RD, Clarkson SG (May 1994). "The human gene for xeroderma pigmentosum complementation group G (XPG) maps to 13q33 by fluorescence in situ hybridization". Genomics. 21 (1): 283–5. doi:10.1006/geno.1994.1261. PMID 8088806.
  6. ^ a b "Entrez Gene: ERCC5 excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne syndrome))".
  7. ^ Drury S, Boustred C, Tekman M, Stanescu H, Kleta R, Lench N, Chitty LS, Scott RH (July 2014). "A novel homozygous ERCC5 truncating mutation in a family with prenatal arthrogryposis--further evidence of genotype-phenotype correlation". American Journal of Medical Genetics. Part A. 164A (7): 1777–83. doi:10.1002/ajmg.a.36506. PMID 24700531. S2CID 8023991.
  8. ^ a b c Barnhoorn S, Uittenboogaard LM, Jaarsma D, Vermeij WP, Tresini M, Weymaere M, Menoni H, Brandt RM, de Waard MC, Botter SM, Sarker AH, Jaspers NG, van der Horst GT, Cooper PK, Hoeijmakers JH, van der Pluijm I (October 2014). "Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency". PLOS Genetics. 10 (10): e1004686. doi:10.1371/journal.pgen.1004686. PMC 4191938. PMID 25299392.
  9. ^ Vermeij WP, Dollé ME, Reiling E, Jaarsma D, Payan-Gomez C, Bombardieri CR, Wu H, Roks AJ, Botter SM, van der Eerden BC, Youssef SA, Kuiper RV, Nagarajah B, van Oostrom CT, Brandt RM, Barnhoorn S, Imholz S, Pennings JL, de Bruin A, Gyenis Á, Pothof J, Vijg J, van Steeg H, Hoeijmakers JH (September 2016). "Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice". Nature. 537 (7620): 427–431. Bibcode:2016Natur.537..427V. doi:10.1038/nature19329. PMC 5161687. PMID 27556946.
  10. ^ Iyer N, Reagan MS, Wu KJ, Canagarajah B, Friedberg EC (February 1996). "Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein". Biochemistry. 35 (7): 2157–67. doi:10.1021/bi9524124. PMID 8652557.

External links edit

  • GeneReviews/NIH/NCBI/UW entry on Xeroderma Pigmentosum

Further reading edit

  • Miura M (March 1999). "Detection of chromatin-bound PCNA in mammalian cells and its use to study DNA excision repair". Journal of Radiation Research. 40 (1): 1–12. Bibcode:1999JRadR..40....1M. doi:10.1269/jrr.40.1. PMID 10408173. S2CID 9987647.
  • Cleaver JE, Thompson LH, Richardson AS, States JC (1999). "A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy". Human Mutation. 14 (1): 9–22. doi:10.1002/(SICI)1098-1004(1999)14:1<9::AID-HUMU2>3.0.CO;2-6. PMID 10447254. S2CID 24148589.
  • Takahashi E, Shiomi N, Shiomi T (November 1992). "Precise localization of the excision repair gene, ERCC5, to human chromosome 13q32.3-q33.1 by direct R-banding fluorescence in situ hybridization". Japanese Journal of Cancer Research. 83 (11): 1117–9. doi:10.1111/j.1349-7006.1992.tb02731.x. PMC 5918714. PMID 1483924.
  • Mudgett JS, MacInnes MA (December 1990). "Isolation of the functional human excision repair gene ERCC5 by intercosmid recombination". Genomics. 8 (4): 623–33. doi:10.1016/0888-7543(90)90248-S. PMID 2276736.
  • Shiomi T, Harada Y, Saito T, Shiomi N, Okuno Y, Yamaizumi M (March 1994). "An ERCC5 gene with homology to yeast RAD2 is involved in group G xeroderma pigmentosum". Mutation Research. 314 (2): 167–75. doi:10.1016/0921-8777(94)90080-9. PMID 7510366.
  • Lehmann AR, Bootsma D, Clarkson SG, Cleaver JE, McAlpine PJ, Tanaka K, Thompson LH, Wood RD (July 1994). "Nomenclature of human DNA repair genes". Mutation Research. 315 (1): 41–2. doi:10.1016/0921-8777(94)90026-4. PMID 7517009.
  • Cloud KG, Shen B, Strniste GF, Park MS (July 1995). "XPG protein has a structure-specific endonuclease activity". Mutation Research. 347 (2): 55–60. doi:10.1016/0165-7992(95)90070-5. PMID 7651464.
  • Matsunaga T, Mu D, Park CH, Reardon JT, Sancar A (September 1995). "Human DNA repair excision nuclease. Analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCC1 antibodies". The Journal of Biological Chemistry. 270 (35): 20862–9. doi:10.1074/jbc.270.35.20862. PMID 7657672.
  • Nouspikel T, Clarkson SG (June 1994). "Mutations that disable the DNA repair gene XPG in a xeroderma pigmentosum group G patient" (PDF). Human Molecular Genetics. 3 (6): 963–7. doi:10.1093/hmg/3.6.963. PMID 7951246.
  • Habraken Y, Sung P, Prakash L, Prakash S (August 1994). "Human xeroderma pigmentosum group G gene encodes a DNA endonuclease". Nucleic Acids Research. 22 (16): 3312–6. doi:10.1093/nar/22.16.3312. PMC 523723. PMID 8078765.
  • O'Donovan A, Davies AA, Moggs JG, West SC, Wood RD (September 1994). "XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair". Nature. 371 (6496): 432–5. Bibcode:1994Natur.371..432O. doi:10.1038/371432a0. PMID 8090225. S2CID 4328388.
  • O'Donovan A, Scherly D, Clarkson SG, Wood RD (June 1994). "Isolation of active recombinant XPG protein, a human DNA repair endonuclease". The Journal of Biological Chemistry. 269 (23): 15965–8. doi:10.1016/S0021-9258(17)33956-X. PMID 8206890.
  • MacInnes MA, Dickson JA, Hernandez RR, Learmonth D, Lin GY, Mudgett JS, Park MS, Schauer S, Reynolds RJ, Strniste GF (October 1993). "Human ERCC5 cDNA-cosmid complementation for excision repair and bipartite amino acid domains conserved with RAD proteins of Saccharomyces cerevisiae and Schizosaccharomyces pombe". Molecular and Cellular Biology. 13 (10): 6393–402. doi:10.1128/MCB.13.10.6393. PMC 364698. PMID 8413238.
  • Scherly D, Nouspikel T, Corlet J, Ucla C, Bairoch A, Clarkson SG (May 1993). "Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2". Nature. 363 (6425): 182–5. Bibcode:1993Natur.363..182S. doi:10.1038/363182a0. PMID 8483504. S2CID 9713824.
  • O'Donovan A, Wood RD (May 1993). "Identical defects in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5". Nature. 363 (6425): 185–8. Bibcode:1993Natur.363..185O. doi:10.1038/363185a0. PMID 8483505. S2CID 4372167.
  • Iyer N, Reagan MS, Wu KJ, Canagarajah B, Friedberg EC (February 1996). "Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein". Biochemistry. 35 (7): 2157–67. doi:10.1021/bi9524124. PMID 8652557.
  • Park MS, Knauf JA, Pendergrass SH, Coulon CH, Strniste GF, Marrone BL, MacInnes MA (August 1996). "Ultraviolet-induced movement of the human DNA repair protein, Xeroderma pigmentosum type G, in the nucleus". Proceedings of the National Academy of Sciences of the United States of America. 93 (16): 8368–73. Bibcode:1996PNAS...93.8368P. doi:10.1073/pnas.93.16.8368. PMC 38677. PMID 8710877.

External links edit