Ecology

Summary

Ecology
The Earth seen from Apollo 17.jpg
Hawk eating prey.jpg European honey bee extracts nectar.jpg
Bufo boreas.jpg Blue Linckia Starfish.JPG
Ecology addresses the full scale of life, from tiny bacteria to processes that span the entire planet. Ecologists study many diverse and complex relations among species, such as predation and pollination. The diversity of life is organized into different habitats, from terrestrial (middle) to aquatic ecosystems.

Ecology (from Greek: οἶκος, "house" and -λογία, "study of")[A] is a branch of biology[1] concerning the spatial and temporal patterns of the distribution and abundance of organisms, including the causes and consequences.[2] Topics of interest include the biodiversity, distribution, biomass, and populations of organisms, as well as cooperation and competition within and between species. Ecosystems are dynamically interacting systems of organisms, the communities they make up, and the non-living components of their environment. Ecosystem processes, such as primary production, pedogenesis, nutrient cycling, and niche construction, regulate the flux of energy and matter through an environment. These processes are sustained by organisms with specific life history traits.

Ecology is not synonymous with environmentalism or strictly natural history. Ecology overlaps with the closely related sciences of evolutionary biology, genetics, and ethology. An important focus for ecologists is to improve the understanding of how biodiversity affects ecological function. Ecologists seek to explain:

  • Life processes, interactions, and adaptations
  • The movement of materials and energy through living communities
  • The successional development of ecosystems
  • The abundance and distribution of organisms and biodiversity in the context of the environment.

Ecology has practical applications in conservation biology, wetland management, natural resource management (agroecology, agriculture, forestry, agroforestry, fisheries), city planning (urban ecology), community health, economics, basic and applied science, and human social interaction (human ecology). It is not treated as separate from humans. Organisms (including humans) and resources compose ecosystems which, in turn, maintain biophysical feedback mechanisms that moderate processes acting on living (biotic) and non-living (abiotic) components of the planet. Ecosystems sustain life-supporting functions and produce natural capital like biomass production (food, fuel, fiber, and medicine), the regulation of climate, global biogeochemical cycles, water filtration, soil formation, erosion control, flood protection, and many other natural features of scientific, historical, economic, or intrinsic value.

The word "ecology" ("Ökologie") was coined in 1866 by the German scientist Ernst Haeckel. Ecological thought is derivative of established currents in philosophy, particularly from ethics and politics.[3] Ancient Greek philosophers such as Hippocrates and Aristotle laid the foundations of ecology in their studies on natural history. Modern ecology became a much more rigorous science in the late 19th century. Evolutionary concepts relating to adaptation and natural selection became the cornerstones of modern ecological theory.

Levels, scope, and scale of organization

The scope of ecology contains a wide array of interacting levels of organization spanning micro-level (e.g., cells) to a planetary scale (e.g., biosphere) phenomena. Ecosystems, for example, contain abiotic resources and interacting life forms (i.e., individual organisms that aggregate into populations which aggregate into distinct ecological communities). Ecosystems are dynamic, they do not always follow a linear successional path, but they are always changing, sometimes rapidly and sometimes so slowly that it can take thousands of years for ecological processes to bring about certain successional stages of a forest. An ecosystem's area can vary greatly, from tiny to vast. A single tree is of little consequence to the classification of a forest ecosystem, but critically relevant to organisms living in and on it.[4] Several generations of an aphid population can exist over the lifespan of a single leaf. Each of those aphids, in turn, support diverse bacterial communities.[5] The nature of connections in ecological communities cannot be explained by knowing the details of each species in isolation, because the emergent pattern is neither revealed nor predicted until the ecosystem is studied as an integrated whole.[6] Some ecological principles, however, do exhibit collective properties where the sum of the components explain the properties of the whole, such as birth rates of a population being equal to the sum of individual births over a designated time frame.[7]

The main subdisciplines of ecology, population (or community) ecology and ecosystem ecology, exhibit a difference not only of scale but also of two contrasting paradigms in the field. The former focuses on organisms' distribution and abundance, while the latter focuses on materials and energy fluxes.[8]

Hierarchy

System behaviors must first be arrayed into different levels of organization. Behaviors corresponding to higher levels occur at slow rates. Conversely, lower organizational levels exhibit rapid rates. For example, individual tree leaves respond rapidly to momentary changes in light intensity, CO2 concentration, and the like. The growth of the tree responds more slowly and integrates these short-term changes.

O'Neill et al. (1986)[9]:76

The scale of ecological dynamics can operate like a closed system, such as aphids migrating on a single tree, while at the same time remain open with regard to broader scale influences, such as atmosphere or climate. Hence, ecologists classify ecosystems hierarchically by analyzing data collected from finer scale units, such as vegetation associations, climate, and soil types, and integrate this information to identify emergent patterns of uniform organization and processes that operate on local to regional, landscape, and chronological scales.

To structure the study of ecology into a conceptually manageable framework, the biological world is organized into a nested hierarchy, ranging in scale from genes, to cells, to tissues, to organs, to organisms, to species, to populations, to communities, to ecosystems, to biomes, and up to the level of the biosphere.[10] This framework forms a panarchy[11] and exhibits non-linear behaviors; this means that "effect and cause are disproportionate, so that small changes to critical variables, such as the number of nitrogen fixers, can lead to disproportionate, perhaps irreversible, changes in the system properties."[12]:14

Biodiversity