Europium(III) phosphide

Summary

Europium phosphide is an inorganic compound of europium and phosphorus with the chemical formula EuP.[2][3][4] Other phosphides are also known.[5]

Europium(III) phosphide
Names
Other names
Phosphanylidyneeuropium, Europium phosphide[1]
Identifiers
  • 120069
3D model (JSmol)
  • Interactive image
ChemSpider
  • 107191
ECHA InfoCard 100.044.780 Edit this at Wikidata
EC Number
  • 249-274-5
  • 120069
  • InChI=1S/Eu.P
    Key: UXXSRDYSXZIJEN-UHFFFAOYSA-N
  • P#[Eu]
Properties
EuP
Molar mass 182.94
Appearance Dark crystals
Density g/cm3
Melting point 2,200 °C (3,990 °F; 2,470 K)
Insoluble
Structure
Cubic
Related compounds
Other anions
Europium nitride
Europium arsenide
Other cations
Samarium phosphide
Gadolinium phosphide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Preparation edit

Heating powdered europium and red phosphorus in an inert atmosphere or vacuum:[citation needed]

4 Eu + P4 → 4 EuP

Passing phosphine through a solution of europium in liquid ammonia:[6]

Eu + 2PH3 → Eu(PH2)2 + H2

Eu(PH2)2 is formed, which then decomposes to europium(III) phosphide and phosphine:[6][7]

2Eu(PH2)2 → 2EuP + 2PH3 + H2

Properties edit

Europium(III) phosphide forms dark crystals which are stable in air and do not dissolve in water. Like sodium chloride, it crystallizes cubically in the space group Fm3m with cell parameter a = 575.5 nm with four formula units per unit cell.[8] Europium(III) phosphide tends to form europium(II) oxide (EuO) in air,[9] and pure EuP shows Van Vleck paramagnetism. The vapor pressure of EuP is 133-266.6 Pa at 1273 K.[10]

Europium(III) phosphide actively reacts with nitric acid.[citation needed]

Uses edit

The compound is a semiconductor used in high power, high frequency applications and in laser diodes.[2]

References edit

  1. ^ "Europium phosphide". European Chemical Agency. Retrieved 15 December 2021.
  2. ^ a b "Europium Phosphide". American Elements. Retrieved 15 December 2021.
  3. ^ Pankratz, L. B. (1995). Bulletin 696. U.S. Government Printing Office. p. 279.
  4. ^ Toxic Substances Control Act (TSCA) Chemical Substance Inventory. Cumulative Supplement to the Initial Inventory: User Guide and Indices. United States Environmental Protection Agency. 1980. p. 172. Retrieved 15 December 2021.
  5. ^ Mironov, K.E.; Brygalina, G.P.; Vikorskii, V. N. (1974). "Magnetism of Europium phosphides". Proceedings of the Rare Earth Research Conference. Plenum Press. p. 105. Retrieved 15 December 2021.
  6. ^ a b Pytlewski, L. L.; Howell, J. K. (1 January 1967). "Preparation of Europium and ytterbium phosphides in liquid ammonia". Chemical Communications (24): 1280. doi:10.1039/C19670001280. Retrieved 15 December 2021.
  7. ^ J.K. Howell, L.L. Pytlewski (August 1970). "Thermal decomposition of europium and ytterbium dihydrogen phosphides". Inorganic and Nuclear Chemistry Letters. 6 (8): 681–686. doi:10.1016/0020-1650(70)80144-1.
  8. ^ Giacomo Bruzzone, Assunta Ferro Ruggiero, Giorgio L. Olcese (1964). "Sul comportamento di ittrio, europio e itterbio nei composti MX con i metalloidi del V e VI gruppo": 66–69. {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  9. ^ K. E. Mironov, G. P. Brygalina, V. N. Ikorskii (1974). "Magnetism of europium phosphides": 105–114. {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  10. ^ S. P. Gordienko, K. E. Mironov (1983). "Stability of europium monophosphide during heating in vacuum and its thermodynamic properties" (24): 131–133. {{cite journal}}: Cite journal requires |journal= (help)