Eurostar E3000


The Eurostar E3000 is a generic satellite model most commonly used for commercial and military communications satellites manufactured by Airbus Defence and Space (formerly Astrium). It is a member of Airbus Defence and Space's Eurostar family. It utilises a chemical, bi-propellant propulsion system for orbit raising and on-station manoeuvres with an optional plasma propulsion system (PPS).[1] The PPS harnesses the Newtonian effect as a result of the ionisation of xenon gas employed by the use of Hall effect plasma thrusters. This system is most commonly used for north–south station-keeping. The E3000 was the first commercial satellite family to use lithium–ion batteries rather than the older nickel-based technologies for power supply during eclipses.

A Eurostar 3000 satellite made in 2000

The E3000 bus can be modified extensively to meet customer requirements, but most of the E3000 satellites have a launch mass of between 4,500 and 6,000 kg (9,900 and 13,200 lb), and solar arrays between 35 and 45 m (115 and 148 ft) providing between nine and sixteen kilowatts at end of life. They tend to feature between 50 and 90 transponders, most often in the Ku-band and C-band.

There have been 52 satellites built around the E3000 platform including ANASIS 2, Hispasat's Amazonas 1 and 2, Arabsat-5A, -5B, and -5C, Astra 1M, 1N, 2E, 2F, 2G, 3B and 5B, Eutelsat's W3A and Hot Bird 8–10, Intelsat 10-02, KA-SAT, Atlantic Bird 7, 70B Telesat's Anik F1R, F3 and Nimiq-4, Skynet 5A–C and the Inmarsat 4-series of satellites.[2] Each of the three Inmarsat 4 in service has a large deployable reflector as the main antenna.

In March 2015, Airbus Defence and Space received a delivery of new 3D-printed brackets for mounting telemetry and tele-command antennas, being the first space-qualified 3D-printed component of its kind.[3]

Eurostar E3000EOR


Also in March 2015, Airbus signed a contract with Snecma for 5-kilowatt PPS5000 Hall-effect thrusters for the E3000 Electric Orbit Raising (E3000EOR) variant of the satellite bus. New thrusters would allow reducing the weight of a satellite by up to 40%.,[4] as Türksat 5A and Türksat 5B

Eurostar Neo


An improved model based on the E3000 called the Eurostar Neo was announced in 2017, offering electric, hybrid, or chemical propulsion, in addition to a scalable power range of 7 kW to 25 kW.[5]


  1. ^ 26th AIAA International Communication Satellite Systems Conference 2008: June 10-12, 2008, San Diego, California. American Institute of Aeronautics and Astronautics. Red Hook, NY: Printed from e-media with permission by Curran Associates. 2008. p. 340. ISBN 978-1-60560-471-8. OCLC 298571190.{{cite book}}: CS1 maint: others (link)
  2. ^ Ng, Jr (15 June 2020). "South Korea's first dedicated MilSat nears launch". Asian Military Review. Retrieved 11 July 2020.
  3. ^ "Airbus Defence and Space Receives 3-D Printed Satellite Parts". Satellite Today. 20 March 2015. Retrieved 1 August 2015.
  4. ^ "Snecma Receives Follow-on Contract from Airbus for All-Electric Thrusters". Satellite Today. 25 March 2015. Retrieved 1 August 2015.
  5. ^ "Eurostar". Airbus Defence & Space. Archived from the original on 9 October 2020. Retrieved 9 October 2020.
  • Airbus's page about the satellite