Factor theorem


In algebra, the factor theorem is a theorem linking factors and zeros of a polynomial. It is a special case of the polynomial remainder theorem.[1]

The factor theorem states that a polynomial has a factor if and only if (i.e. is a root).[2]

Factorization of polynomialsEdit

Two problems where the factor theorem is commonly applied are those of factoring a polynomial and finding the roots of a polynomial equation; it is a direct consequence of the theorem that these problems are essentially equivalent.

The factor theorem is also used to remove known zeros from a polynomial while leaving all unknown zeros intact, thus producing a lower degree polynomial whose zeros may be easier to find. Abstractly, the method is as follows:[3]

  1. "Guess" a zero   of the polynomial  . (In general, this can be very hard, but math textbook problems that involve solving a polynomial equation are often designed so that some roots are easy to discover.)
  2. Use the factor theorem to conclude that   is a factor of  .
  3. Compute the polynomial  , for example using polynomial long division or synthetic division.
  4. Conclude that any root   of   is a root of  . Since the polynomial degree of   is one less than that of  , it is "simpler" to find the remaining zeros by studying  .


Find the factors of  

Solution: Let   be the above polynomial

Constant term = 2
Coefficient of  

All possible factors of 2 are   and  . Substituting  , we get:


So,  , i.e,   is a factor of  . On dividing   by  , we get

Quotient =  


Out of these, the quadratic factor can be further factored using the quadratic formula, which gives as roots of the quadratic   Thus the three irreducible factors of the original polynomial are     and  


  1. ^ Sullivan, Michael (1996), Algebra and Trigonometry, Prentice Hall, p. 381, ISBN 0-13-370149-2.
  2. ^ Sehgal, V K; Gupta, Sonal, Longman ICSE Mathematics Class 10, Dorling Kindersley (India), p. 119, ISBN 978-81-317-2816-1.
  3. ^ Bansal, R. K., Comprehensive Mathematics IX, Laxmi Publications, p. 142, ISBN 81-7008-629-9.