BREAKING NEWS
Factor theorem

## Summary

In algebra, the factor theorem is a theorem linking factors and zeros of a polynomial. It is a special case of the polynomial remainder theorem.[1]

The factor theorem states that a polynomial ${\displaystyle f(x)}$ has a factor ${\displaystyle (x-\alpha )}$ if and only if ${\displaystyle f(\alpha )=0}$ (i.e. ${\displaystyle \alpha }$ is a root).[2]

## Factorization of polynomials

Two problems where the factor theorem is commonly applied are those of factoring a polynomial and finding the roots of a polynomial equation; it is a direct consequence of the theorem that these problems are essentially equivalent.

The factor theorem is also used to remove known zeros from a polynomial while leaving all unknown zeros intact, thus producing a lower degree polynomial whose zeros may be easier to find. Abstractly, the method is as follows:[3]

1. "Guess" a zero ${\displaystyle a}$  of the polynomial ${\displaystyle f}$ . (In general, this can be very hard, but math textbook problems that involve solving a polynomial equation are often designed so that some roots are easy to discover.)
2. Use the factor theorem to conclude that ${\displaystyle (x-a)}$  is a factor of ${\displaystyle f(x)}$ .
3. Compute the polynomial ${\textstyle g(x)={\frac {f(x)}{(x-a)}}}$ , for example using polynomial long division or synthetic division.
4. Conclude that any root ${\displaystyle x\neq a}$  of ${\displaystyle f(x)=0}$  is a root of ${\displaystyle g(x)=0}$ . Since the polynomial degree of ${\displaystyle g}$  is one less than that of ${\displaystyle f}$ , it is "simpler" to find the remaining zeros by studying ${\displaystyle g}$ .

### Example

Find the factors of ${\displaystyle x^{3}+7x^{2}+8x+2.}$

Solution: Let ${\displaystyle p(x)}$  be the above polynomial

Constant term = 2
Coefficient of ${\displaystyle x^{3}=1}$

All possible factors of 2 are ${\displaystyle \pm 1}$  and ${\displaystyle \pm 2}$ . Substituting ${\displaystyle x=-1}$ , we get:

${\displaystyle (-1)^{3}+7(-1)^{2}+8(-1)+2=0}$

So, ${\displaystyle (x-(-1))}$ , i.e, ${\displaystyle (x+1)}$  is a factor of ${\displaystyle p(x)}$ . On dividing ${\displaystyle p(x)}$  by ${\displaystyle (x+1)}$ , we get

Quotient = ${\displaystyle x^{2}+6x+2}$

Hence, ${\displaystyle p(x)=(x^{2}+6x+2)(x+1)}$

Out of these, the quadratic factor can be further factored using the quadratic formula, which gives as roots of the quadratic ${\displaystyle -3\pm {\sqrt {7}}.}$  Thus the three irreducible factors of the original polynomial are ${\displaystyle x+1,}$  ${\displaystyle x-(-3+{\sqrt {7}}),}$  and ${\displaystyle x-(-3-{\sqrt {7}}).}$

## References

1. ^ Sullivan, Michael (1996), Algebra and Trigonometry, Prentice Hall, p. 381, ISBN 0-13-370149-2.
2. ^ Sehgal, V K; Gupta, Sonal, Longman ICSE Mathematics Class 10, Dorling Kindersley (India), p. 119, ISBN 978-81-317-2816-1.
3. ^ Bansal, R. K., Comprehensive Mathematics IX, Laxmi Publications, p. 142, ISBN 81-7008-629-9.