Fenchel's theorem

Summary

In differential geometry, Fenchel's theorem is an inequality on the total absolute curvature of a closed smooth space curve, stating that it is always at least . Equivalently, the average curvature is at least , where is the length of the curve. The only curves of this type whose total absolute curvature equals and whose average curvature equals are the plane convex curves. The theorem is named after Werner Fenchel, who published it in 1929.

Fenchel's theorem
TypeTheorem
FieldDifferential geometry
StatementA smooth closed space curve has total absolute curvature , with equality if and only if it is a convex plane curve
First stated byWerner Fenchel
First proof in1929

The Fenchel theorem is enhanced by the Fáry–Milnor theorem, which says that if a closed smooth simple space curve is nontrivially knotted, then the total absolute curvature is greater than .

Proof edit

Given a closed smooth curve   with unit speed, the velocity   is also a closed smooth curve. The total absolute curvature is its length  .

The curve   does not lie in an open hemisphere. If so, then there is   such that  , so  , a contradiction. This also shows that if   lies in a closed hemisphere, then  , so   is a plane curve.

Consider a point   such that curves   and   have the same length. By rotating the sphere, we may assume   and   are symmetric about the axis through the poles. By the previous paragraph, at least one of the two curves   and   intersects with the equator at some point  . We denote this curve by  . Then  .

We reflect   across the plane through  ,  , and the north pole, forming a closed curve   containing antipodal points  , with length  . A curve connecting   has length at least  , which is the length of the great semicircle between  . So  , and if equality holds then   does not cross the equator.

Therefore,  , and if equality holds then   lies in a closed hemisphere, and thus   is a plane curve.

References edit

  • do Carmo, Manfredo P. (2016). Differential geometry of curves & surfaces (Revised & updated second edition of 1976 original ed.). Mineola, NY: Dover Publications, Inc. ISBN 978-0-486-80699-0. MR 3837152. Zbl 1352.53002.
  • Fenchel, Werner (1929). "Über Krümmung und Windung geschlossener Raumkurven". Mathematische Annalen (in German). 101 (1): 238–252. doi:10.1007/bf01454836. JFM 55.0394.06. MR 1512528. S2CID 119908321.
  • Fenchel, Werner (1951). "On the differential geometry of closed space curves". Bulletin of the American Mathematical Society. 57 (1): 44–54. doi:10.1090/S0002-9904-1951-09440-9. MR 0040040. Zbl 0042.40006.; see especially equation 13, page 49
  • O'Neill, Barrett (2006). Elementary differential geometry (Revised second edition of 1966 original ed.). Amsterdam: Academic Press. doi:10.1016/C2009-0-05241-6. ISBN 978-0-12-088735-4. MR 2351345. Zbl 1208.53003.
  • Spivak, Michael (1999). A comprehensive introduction to differential geometry. Vol. III (Third edition of 1975 original ed.). Wilmington, DE: Publish or Perish, Inc. ISBN 0-914098-72-1. MR 0532832. Zbl 1213.53001.