In mathematics, Frullani integrals are a specific type of improper integral named after the Italian mathematician Giuliano Frullani. The integrals are of the form
where is a function defined for all non-negative real numbers that has a limit at , which we denote by .
The following formula for their general solution holds if is continuous on , has finite limit at , and :
Proof for continuously differentiable functions
edit
A simple proof of the formula (under stronger assumptions than those stated above, namely ) can be arrived at by using the Fundamental theorem of calculus to express the integrand as an integral of :
Note that the integral in the second line above has been taken over the interval, not .
Applications
edit
The formula can be used to derive an integral representation for the natural logarithm by letting and :
The formula can also be generalized in several different ways.[1]
References
edit
G. Boros, Victor Hugo Moll, Irresistible Integrals (2004), pp. 98
Juan Arias-de-Reyna, On the Theorem of Frullani (PDF; 884 kB), Proc. A.M.S. 109 (1990), 165-175.
ProofWiki, proof of Frullani's integral.
^Bravo, Sergio; Gonzalez, Ivan; Kohl, Karen; Moll, Victor Hugo (21 January 2017). "Integrals of Frullani type and the method of brackets". Open Mathematics. 15 (1). doi:10.1515/math-2017-0001. Retrieved 17 June 2020.