Geikielite

Summary

Geikielite is a magnesium titanium oxide mineral with formula: MgTiO3. It is a member of the ilmenite group. It crystallizes in the trigonal system forming typically opaque, black to reddish black crystals.

Geikielite
Crystals of geikielite from the Maxwell quarry, Chelsea, Outaouais, Québec, Canada
General
CategoryOxide mineral
Formula
(repeating unit)
MgTiO3
IMA symbolGk[1]
Strunz classification4.CB.05
Crystal systemTrigonal
Crystal classRhombohedral (3)
(same H-M symbol)
Space groupR3
Unit cella = 5.05478(26) Å
c = 13.8992(7) Å; Z = 6
Identification
ColorBlack, ruby red uncommon; red internal reflections
Crystal habitTabular prismatic crystals, also as finely granular masses
CleavageGood on {1011}
Mohs scale hardness5 - 6
LusterSub-metallic
StreakPurplish brown
DiaphaneityOpaque to translucent
Specific gravity3.79 - 4.2
Optical propertiesUniaxial (-)
Refractive indexnω = 2.310 - 2.350 nε = 1.950 - 1.980
Birefringenceδ = 0.360 - 0.370
PleochroismWeak, O = pinkish red, E = brownish to purplish red
References[2][3][4]

It was first described in 1892[5] for an occurrence in the Ceylonese gem bearing gravel placers. It was named for Scottish geologist Sir Archibald Geikie (1835–1924).[4] It occurs in metamorphosed impure magnesian limestones, in serpentinite derived from ultramafic rocks, in kimberlites and carbonatites. Associated minerals include rutile, spinel, clinohumite, perovskite, diopside, serpentine, forsterite, brucite, hydrotalcite, chlorite and calcite.[2]

References edit

  1. ^ Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43. S2CID 235729616.
  2. ^ a b Handbook of Mineralogy
  3. ^ Geikielite on Mindat.org
  4. ^ a b Geikielite on Webmineral
  5. ^ Fletcher, L. (1892). "Geikielite and Baddeleyite, Two New Mineral Species". Nature. 46 (1200): 620–621. Bibcode:1892Natur..46..620F. doi:10.1038/046620b0.

Further reading edit

  • Ghiorso, Mark S. (1990). "Thermodynamic properties of hematite — Ilmenite — Geikielite solid solutions". Contributions to Mineralogy and Petrology. 104 (6): 645–667. Bibcode:1990CoMP..104..645G. doi:10.1007/BF01167285. S2CID 98522254.
  • Reynard, B.; Guyot, F. (1994). "High-temperature properties of geikielite (MgTiO3-ilmenite) from high-temperature high-pressure Raman spectroscopy ? Some implications for MgSiO3-ilmenite". Physics and Chemistry of Minerals. 21 (7): 441. Bibcode:1994PCM....21..441R. doi:10.1007/BF00202274. S2CID 96095190.
  • Baura-Peña, M. P.; Martínez-Lope, M. J.; García-Clavel, M. E. (1991). "Synthesis of the mineral geikielite MgTiO3". Journal of Materials Science. 26 (16): 4341. Bibcode:1991JMatS..26.4341B. doi:10.1007/BF00543648. S2CID 94170430.
  • Robie, Richard A.; Haselton, H.T.; Hemingway, Bruce S. (1989). "Heat capacities and entropies at 298.15 K of MgTiO3(geikielite), ZnO (zincite), and ZnCO3 (smithsonite)". The Journal of Chemical Thermodynamics. 21 (7): 743. doi:10.1016/0021-9614(89)90058-X.
  • Gieré, Reto (1987). "Titanian clinohumite and geikielite in marbles from the Bergell contact aureole". Contributions to Mineralogy and Petrology. 96 (4): 496–502. Bibcode:1987CoMP...96..496G. doi:10.1007/BF01166694. S2CID 86861792.
  • Parthasarathy, G. (2007). "Electrical resistivity of nano-crystalline and natural MgTiO3−geikielite at high-pressures up to 8 GPa". Materials Letters. 61 (21): 4329–4331. doi:10.1016/j.matlet.2007.01.097.
  • Mitchell, Jeremy N.; Yu, Ning; Sickafus, Kurt E.; Nastasi, Michael A.; McClellan, Kenneth J. (1998). "Ion irradiation damage in geikielite (MgTiO3)". Philosophical Magazine A. 78 (3): 713. Bibcode:1998PMagA..78..713M. doi:10.1080/01418619808241931.
  • Chao, G. Y.; Hounslow, A. W. (June 1967). "Geikielite; a new Canadian occurrence". The Canadian Mineralogist. 9 (1): 95–100.