George de Hevesy


György Károly Hevesy
George de Hevesy.jpg
György Bischitz

(1885-08-01)1 August 1885
Died5 July 1966(1966-07-05) (aged 80)
CitizenshipHungary, Germany
Alma materUniversity of Freiburg
Known for
Spouse(s)Pia Riis (m. 1924; 4 children)
AwardsNobel Prize for Chemistry (1943)
Copley Medal (1949)
Faraday Lectureship Prize (1950)
Atoms for Peace Award (1958)
Fellow of the Royal Society[1]
Scientific career
InstitutionsGhent University
University of Budapest
Niels Bohr Institute
ETH Zürich
University of Freiburg
University of Manchester
Stefan Meyer Institute for Subatomic Physics
Doctoral advisorGeorg Franz Julius Meyer

George Charles de Hevesy (Hungarian: Hevesy György Károly, German: Georg Karl von Hevesy; 1 August 1885 – 5 July 1966) was a Hungarian radiochemist and Nobel Prize in Chemistry laureate, recognized in 1943 for his key role in the development of radioactive tracers to study chemical processes such as in the metabolism of animals. He also co-discovered the element hafnium.[1][2][3][4][5][6]


Early years

Hevesy György was born in Budapest, Hungary, to a wealthy and ennobled family of Hungarian-Jewish descent,[7] the fifth of eight children to his parents Lajos Bischitz and Baroness Eugénia (Jenny) Schossberger (ennobled as "De Tornya"). Grandparents from both sides of the family had provided the presidents of the Jewish community of Pest.[7] His parents converted to Roman Catholicism.[8] George grew up in Budapest and graduated high school in 1903 from Piarista Gimnázium. The family's name in 1904 was Hevesy-Bischitz, and Hevesy later changed his own.

De Hevesy began his studies in chemistry at the University of Budapest for one year, and at the Technical University of Berlin for several months, but transferred to the University of Freiburg. There he met Ludwig Gattermann. In 1906, he started his Ph.D. thesis with Georg Franz Julius Meyer,[9] acquiring his doctorate in physics in 1908. In 1908, Hevesy was offered a position at the ETH Zürich, Switzerland, yet being independently wealthy, he was able to choose his research environment. In succession he worked with Fritz Haber in Karlsruhe, Germany, then with Ernest Rutherford in Manchester, England, where he also met Niels Bohr. Back at home in Budapest, he was appointed professor in physical chemistry in 1918. In 1920, he settled in Copenhagen.


In 1922, de Hevesy co-discovered (with Dirk Coster) the element hafnium (72Hf) (Latin Hafnia for "Copenhagen", the home town of Niels Bohr). Mendeleev's 1869 periodic table arranged the chemical elements into a logical system, but a chemical element with 72 protons was missing. Hevesy determined to look for that element on the basis of Bohr's atomic model. The mineralogical museum of Norway and Greenland in Copenhagen furnished the material for the research. Characteristic X-ray spectra recordings made of the sample indicated that a new element was present. The accepted account has been disputed by Mansel Davies and Eric Scerri who attribute the prediction that element 72 would be a transition element to the chemist Charles Bury.[citation needed]

Supported financially by the Rockefeller Foundation, Hevesy had a very productive year. He developed the X-ray fluorescence analytical method, and discovered the samarium alpha-ray. It was here he began the use of radioactive isotopes in studying the metabolic processes of plants and animals, by tracing chemicals in the body by replacing part of stable isotopes with small quantities of the radioactive isotopes. In 1923, Hevesy published the first study on the use of the naturally radioactive 212Pb as radioactive tracer to follow the absorption and translocation in the roots, stems and leaves of Vicia faba, also known as the broad bean.[10][11] Later, in 1943, the work on radioactive tracing would earn Hevesy the Nobel Prize in Chemistry.[12]

In 1924, Hevesy returned to Freiburg as Professor of Physical Chemistry, and in 1930 went to Cornell University, Ithaca as Baker Lecturer. Four years later he resumed his activities at Niels Bohr's Institute, based there through 1952. During 1936, he invented Neutron Activation Analysis. During 1943 he was domiciled in Stockholm and was an Associate of the Institute of Research in Organic Chemistry. In 1949 he was elected Franqui Professor in the University of Ghent. In his retirement, he remained an active scientific associate of the University of Stockholm. Hevesy was offered and accepted a job from the University of Freiburg.

World War II and beyond

Stolpersteine for Georg and his wife Pia de Hevesy

Prior to the onset of World War II, Max von Laue and James Franck had sent their gold Nobel Prizes to Denmark to keep them from being confiscated by the Nazis. After the Nazi invasion of Denmark this placed them in danger; it was illegal at the time to send gold out of Germany, and were it discovered that Laue and Franck had done so, they could have faced prosecution. To prevent this, de Hevesy concealed the medals by dissolving them with aqua regia and placing the resulting solution on a shelf in his laboratory at the Niels Bohr Institute. After the war, he returned to find the solution undisturbed and precipitated the gold out of the acid. The Nobel Society then recast the Nobel Prizes using the original gold.[13][14]

By 1943, Copenhagen was no longer safe for a Jewish scientist and de Hevesy fled to Sweden, where he worked at the Stockholm University College until 1961. In Stockholm de Hevesy was received at the department of chemistry by the Swedish professor and Nobel Prize winner Hans von Euler-Chelpin, who remained strongly pro-German throughout the war. Despite this, de Hevesy and von Euler-Chelpin collaborated on many scientific papers during and after the war.

While he was in Stockholm, de Hevesy received the Nobel Prize in chemistry. He was later inducted into the Royal Society and received the Copley Medal, of which he was particularly proud. De Hevesy stated: "The public thinks the Nobel Prize in chemistry for the highest honor that a scientist can receive, but it is not so. Forty or fifty received Nobel chemistry prizes, but only ten foreign members of the Royal Society and two (Bohr and Hevesy) received a medal-Copley." George de Hevesy was elected a foreign member of the Royal Swedish Academy of Sciences in 1942, and his status was later changed to Swedish member. He received the Atoms for Peace Award in 1958 for his peaceful use of radioactive isotopes.

Family life and death

George de Hevesy's grave in Budapest. Cemetery Kerepesi: 27 Hungarian Academy of Sciences.

De Hevesy married Pia Riis in 1924. They had one son and three daughters together, one of whom (Eugenie) married a grandson of the Swedish Nobel laureate Svante Arrhenius.[15] De Hevesy died in 1966 at the age of eighty and was buried in Freiburg. In 2000, his corpse was transferred to the Kerepesi Cemetery in Budapest, Hungary. He had published a total of 397 scientific documents, one of which was the Becquerel-Curie Memorial Lecture, in which he had reminisced about the careers of pioneers of radiochemistry.[16] At his family's request, his ashes were interred at his birthplace in Budapest on 19 April 2001.

On 10 May 2005 the Hevesy Laboratory[17] was founded at Risø National Laboratory for Sustainable Energy, now Technical University of Denmark, DTU Nutech. It was named after George de Hevesy as the father of the isotope tracer principle by the initiative of the lab's first head Prof. Mikael Jensen.

See also


  1. ^ a b Cockcroft, J. D. (1967). "George de Hevesy 1885-1966". Biographical Memoirs of Fellows of the Royal Society. 13: 125–126. doi:10.1098/rsbm.1967.0007.
  2. ^ Levi, H. (1976). "George von Hevesy memorial lecture. George Hevesy and his concept of radioactive indicators--in retrospect". European Journal of Nuclear Medicine. 1 (1): 3–10. doi:10.1007/BF00253259. PMID 797570. S2CID 6640231.
  3. ^ Ostrowski, W. (1968). "George Hevesy inventor of isotope methods in biochemical studies". Postepy Biochemii. 14 (1): 149–153. PMID 4870858.
  4. ^ Dal Santo, G. (1966). "Professor George C. De Hevesy. In reverent memory". Acta Isotopica. 6 (1): 5–8. PMID 4865432.
  5. ^ "George De Hevesy". Triangle; the Sandoz Journal of Medical Science. 91: 239–240. 1964. PMID 14184278.
  6. ^ Weintraub, B. (April 2005), "George de Hevesy: Hafnium and Radioactive Traces; Chemistry", Bull. Isr. Chem. Soc. (18): 41–43
  7. ^ a b Levi, Hilde (1985), George de Hevesy : life and work : a biography, Bristol: A. Hilger, p. 14, ISBN 978-0-85274-555-7
  8. ^ "George de Hevesy, Nobel Prize in Chemistry 1943". geni_family_tree.
  9. ^ Norrby, Erling (2013), Nobel Prizes and Nature's Surprises
  10. ^ Myers, W. G. (1979). "Georg Charles de Hevesy: The father of nuclear medicine". Journal of Nuclear Medicine. 20 (6): 590–594. PMID 395289.
  11. ^ Hevesy, G. (1923). "The Absorption and Translocation of Lead by Plants: A Contribution to the Application of the Method of Radioactive Indicators in the Investigation of the Change of Substance in Plants". The Biochemical Journal. 17 (4–5): 439–445. doi:10.1042/bj0170439. PMC 1263906. PMID 16743235.
  12. ^ "The Nobel Prize in Chemistry 1943".
  13. ^ Hevesy, George (1962), Adventures in radioisotope research, 1, New York: Pergamon press, p. 27
  14. ^ Birgitta Lemmel (2006). "The Nobel Prize Medals and the Medal for the Prize in Economics". The Nobel Foundation.
  15. ^ Scripps Log obituaries,
  16. ^ De Hevesy, George C. (1961), "Marie Curie and her contemporaries" (PDF), Journal of Nuclear Medicine, 2: 169–82, PMID 13714019
  17. ^ Hevesy Laboratory

External links

  • Media related to George de Hevesy at Wikimedia Commons
  • George de Hevesy on Edit this at Wikidata including the Nobel Lecture on 12 December 1944 Some Applications of Isotopic Indicators
  • Annotated bibliography for George de Hevesy from the Alsos Digital Library for Nuclear Issues
  • Works by or about George de Hevesy at Internet Archive