Throughout this article, Latin indices take values 1, 2, ..., 8 for the eight gluon color charges, while Greek indices take values 0 for timelike components and 1, 2, 3 for spacelike components of four-dimensional vectors and tensors in spacetime. Throughout all equations, the summation convention is used on all color and tensor indices, unless explicitly stated otherwise.
Introduction
edit
Gluons can have eight colour charges so there are eight fields, in contrast to photons which are neutral and so there is only one photon field.
The gluon fields for each color charge each have a "timelike" component analogous to the electric potential, and three "spacelike" components analogous to the magnetic vector potential. Using similar symbols:[1]
where n = 1, 2, ... 8 are not exponents but enumerate the eight gluon color charges, and all components depend on the position vectorr of the gluon and time t. Each is a scalar field, for some component of spacetime and gluon color charge.
The Gell-Mann matricesλa are eight 3 × 3 matrices which form matrix representations of the SU(3) group. They are also generators of the SU(3) group, in the context of quantum mechanics and field theory; a generator can be viewed as an operator corresponding to a symmetry transformation (see symmetry in quantum mechanics). These matrices play an important role in QCD as QCD is a gauge theory of the SU(3) gauge group obtained by taking the color charge to define a local symmetry: each Gell-Mann matrix corresponds to a particular gluon color charge, which in turn can be used to define color charge operators. Generators of a group can also form a basis for a vector space, so the overall gluon field is a "superposition" of all the color fields. In terms of the Gell-Mann matrices (divided by 2 for convenience),
the components of the gluon field are represented by 3 × 3 matrices, given by:
or collecting these into a vector of four 3 × 3 matrices:
the gluon field is:
Gauge covariant derivative in QCD
edit
Below the definitions (and most of the notation) follow K. Yagi, T. Hatsuda, Y. Miake[2] and Greiner, Schäfer.[3]
The gauge transformation of each gluon field which leaves the gluon field strength tensor unchanged is;[3]
where
is a 3 × 3 matrix constructed from the tn matrices above and θn = θn(r, t) are eight gauge functions dependent on spatial position r and time t. Matrix exponentiation is used in the transformation. The gauge covariant derivative transforms similarly. The functions θn here are similar to the gauge function χ(r, t) when changing the electromagnetic four-potentialA, in spacetime components:
^B.R. Martin; G. Shaw (2009). Particle Physics. Manchester Physics Series (3rd ed.). John Wiley & Sons. pp. 380–384. ISBN 978-0-470-03294-7.
^K. Yagi; T. Hatsuda; Y. Miake (2005). Quark-Gluon Plasma: From Big Bang to Little Bang. Cambridge monographs on particle physics, nuclear physics, and cosmology. Vol. 23. Cambridge University Press. pp. 17–18. ISBN 0-521-561-086.
^ abcW. Greiner; G. Schäfer (1994). "4". Quantum Chromodynamics. Springer. ISBN 3-540-57103-5.
Further reading
edit
Books
edit
W. N. Cottingham; D. A. Greenwood (2007). An Introduction to the Standard Model of Particle Physics. Cambridge University Press. ISBN 978-113-946-221-1.
H. Fritzsch (1982). Quarks: the stuff of matter. Allen lane. ISBN 0-7139-15331.
S. Sarkar; H. Satz; B. Sinha (2009). The Physics of the Quark-Gluon Plasma: Introductory Lectures. Springer. ISBN 978-3642022852.
J. Thanh Van Tran, ed. (1987). Hadrons, Quarks and Gluons: Proceedings of the Hadronic Session of the Twenty-Second Rencontre de Moriond, Les Arcs-Savoie-France. Atlantica Séguier Frontières. ISBN 2863320483.
R. Alkofer; H. Reinhart (1995). Chiral Quark Dynamics. Springer. ISBN 3540601376.
K. Chung (2008). Hadronic Production of ψ(2S) Cross Section and Polarization. ISBN 978-0549597742.
J. Collins (2011). Foundations of Perturbative QCD. Cambridge University Press. ISBN 978-0521855334.
W.N.A. Cottingham; D.A.A. Greenwood (1998). Standard Model of Particle Physics. Cambridge University Press. ISBN 0521588324.
M. D’Elia, A. Di Giacomo, E. Meggiolaro (1997). "Field strength correlators in full QCD". Physics Letters B. 408 (1–4): 315–319. arXiv:hep-lat/9705032. Bibcode:1997PhLB..408..315D. doi:10.1016/S0370-2693(97)00814-9. S2CID 119533874.{{cite journal}}: CS1 maint: multiple names: authors list (link)
A. Di Giacomo; M. D’elia; H. Panagopoulos; E. Meggiolaro (1998). "Gauge Invariant Field Strength Correlators In QCD". arXiv:hep-lat/9808056.
M. Neubert (1993). "A Virial Theorem for the Kinetic Energy of a Heavy Quark inside Hadrons". Physics Letters B. 322 (4): 419–424. arXiv:hep-ph/9311232. Bibcode:1994PhLB..322..419N. doi:10.1016/0370-2693(94)91174-6.
M. Neubert; N. Brambilla; H.G. Dosch; A. Vairo (1998). "Field strength correlators and dual effective dynamics in QCD". Physical Review D. 58 (3): 034010. arXiv:hep-ph/9802273. Bibcode:1998PhRvD..58c4010B. doi:10.1103/PhysRevD.58.034010. S2CID 1824834.
V. Dzhunushaliev (2011). "Gluon field distribution between three infinitely spaced quarks". arXiv:1101.5845 [hep-ph].
External links
edit
K. Ellis (2005). "QCD" (PDF). Fermilab. Archived from the original (PDF) on September 26, 2006.
"Chapter 2: The QCD Lagrangian" (PDF). Technische Universität München. Retrieved 2013-10-17.