In mathematics, the concept of groupoid algebra generalizes the notion of group algebra.[1]
Given a groupoid (in the sense of a category with all morphisms invertible) and a field , it is possible to define the groupoid algebra as the algebra over formed by the vector space having the elements of (the morphisms of) as generators and having the multiplication of these elements defined by , whenever this product is defined, and otherwise. The product is then extended by linearity.[2]
Some examples of groupoid algebras are the following:[3]