Hadamard three-circle theorem

Summary

In complex analysis, a branch of mathematics, the Hadamard three-circle theorem is a result about the behavior of holomorphic functions.

Statement

edit

Hadamard three-circle theorem: Let   be a holomorphic function on the annulus  . Let   be the maximum of   on the circle   Then,   is a convex function of the logarithm   Moreover, if   is not of the form   for some constants   and  , then   is strictly convex as a function of  

The conclusion of the theorem can be restated as

 

for any three concentric circles of radii  

Proof

edit

The three circles theorem follows from the fact that for any real a, the function Re log(zaf(z)) is harmonic between two circles, and therefore takes its maximum value on one of the circles. The theorem follows by choosing the constant a so that this harmonic function has the same maximum value on both circles.

The theorem can also be deduced directly from Hadamard's three-line theorem.[1]

History

edit

A statement and proof for the theorem was given by J.E. Littlewood in 1912, but he attributes it to no one in particular, stating it as a known theorem. Harald Bohr and Edmund Landau attribute the theorem to Jacques Hadamard, writing in 1896; Hadamard published no proof.[2]

See also

edit

Notes

edit
  1. ^ Ullrich 2008
  2. ^ Edwards 1974, Section 9.3

References

edit
  • Edwards, H.M. (1974), Riemann's Zeta Function, Dover Publications, ISBN 0-486-41740-9
  • Littlewood, J. E. (1912), "Quelques consequences de l'hypothese que la function ζ(s) de Riemann n'a pas de zeros dans le demi-plan Re(s) > 1/2.", Les Comptes rendus de l'Académie des sciences, 154: 263–266
  • E. C. Titchmarsh, The theory of the Riemann Zeta-Function, (1951) Oxford at the Clarendon Press, Oxford. (See chapter 14)
  • Ullrich, David C. (2008), Complex made simple, Graduate Studies in Mathematics, vol. 97, American Mathematical Society, pp. 386–387, ISBN 978-0821844793

This article incorporates material from Hadamard three-circle theorem on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

edit
  • "proof of Hadamard three-circle theorem"