In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by
Hurwitz's formula has a variety of different proofs.[9] One proof uses the contour integration representation along with the residue theorem.[6][8] A second proof uses a theta function identity, or equivalently Poisson summation.[10] These proofs are analogous to the two proofs of the functional equation for the Riemann zeta function in Riemann's 1859 paper. Another proof of the Hurwitz formula uses Euler–Maclaurin summation to express the Hurwitz zeta function as an integral
(−1 < Re(s) < 0 and 0 < a ≤ 1) and then expanding the numerator as a Fourier series.[11]
Functional equation for rational a
edit
When a is a rational number, Hurwitz's formula leads to the following functional equation: For integers ,
holds for and z complex, but not an integer. For z=n an integer, this simplifies to
where ζ here is the Riemann zeta function. Note that this latter form is the functional equation for the Riemann zeta function, as originally given by Riemann. The distinction based on z being an integer or not accounts for the fact that the Jacobi theta function converges to the periodic delta function, or Dirac comb in z as .
Relation to Dirichlet L-functions
edit
At rational arguments the Hurwitz zeta function may be expressed as a linear combination of Dirichlet L-functions and vice versa: The Hurwitz zeta function coincides with Riemann's zeta function ζ(s) when a = 1, when a = 1/2 it is equal to (2s−1)ζ(s),[21] and if a = n/k with k > 2, (n,k) > 1 and 0 < n < k, then[22]
the sum running over all Dirichlet characters mod k. In the opposite direction we have the linear combination[21]
of which a useful generalization is the distribution relation[23]
(This last form is valid whenever q a natural number and 1 − qa is not.)
Zeros
edit
If a=1 the Hurwitz zeta function reduces to the Riemann zeta function itself; if a=1/2 it reduces to the Riemann zeta function multiplied by a simple function of the complex argument s (vide supra), leading in each case to the difficult study of the zeros of Riemann's zeta function. In particular, there will be no zeros with real part greater than or equal to 1. However, if 0<a<1 and a≠1/2, then there are zeros of Hurwitz's zeta function in the strip 1<Re(s)<1+ε for any positive real number ε. This was proved by Davenport and Heilbronn for rational or transcendental irrational a,[24] and by Cassels for algebraic irrational a.[21][25]
Rational values
edit
The Hurwitz zeta function occurs in a number of striking identities at rational values.[26] In particular, values in terms of the Euler polynomials:
and
One also has
which holds for . Here, the and are defined by means of the Legendre chi function as
and
For integer values of ν, these may be expressed in terms of the Euler polynomials. These relations may be derived by employing the functional equation together with Hurwitz's formula, given above.
^Hurwitz, Adolf (1882). "Einige Eigenschaften der Dirichlet'schen Functionen , die bei der Bestimmung der Classenanzahlen binärer quadratischer Formen auftreten". Zeitschrift für Mathematik und Physik (in German). 27: 86–101.
^See the references in Section 4 of: Kanemitsu, S.; Tanigawa, Y.; Tsukada, H.; Yoshimoto, M. (2007). "Contributions to the theory of the Hurwitz zeta-function". Hardy-Ramanujan Journal. 30: 31–55. doi:10.46298/hrj.2007.159. Zbl 1157.11036.
^Berndt, Bruce C. (Winter 1972). "On the Hurwitz zeta-function". Rocky Mountain Journal of Mathematics. 2 (1): 151–158. doi:10.1216/RMJ-1972-2-1-151. Zbl 0229.10023.
^Blagouchine, I.V. (2014). "A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations". Journal of Number Theory. 148. Elsevier: 537–592. arXiv:1401.3724. doi:10.1016/j.jnt.2014.08.009.
^Hasse, Helmut (1930), "Ein Summierungsverfahren für die Riemannsche ζ-Reihe", Mathematische Zeitschrift, 32 (1): 458–464, doi:10.1007/BF01194645, JFM 56.0894.03, S2CID 120392534
^Vepstas, Linas (2007). "An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions". Numerical Algorithms. 47 (3): 211–252. arXiv:math/0702243. Bibcode:2008NuAlg..47..211V. doi:10.1007/s11075-007-9153-8. S2CID 15131811.
^Jacek Klinowski, Djurdje Cvijović (1999). "Values of the Legendre chi and Hurwitz zeta functions at rational arguments". Mathematics of Computation. 68 (228): 1623–1631. Bibcode:1999MaCom..68.1623C. doi:10.1090/S0025-5718-99-01091-1.
^Cassels, J. W. S. (1961), "Footnote to a note of Davenport and Heilbronn", Journal of the London Mathematical Society, 36 (1): 177–184, doi:10.1112/jlms/s1-36.1.177, Zbl 0097.03403
^Given by Cvijović, Djurdje & Klinowski, Jacek (1999), "Values of the Legendre chi and Hurwitz zeta functions at rational arguments", Mathematics of Computation, 68 (228): 1623–1630, Bibcode:1999MaCom..68.1623C, doi:10.1090/S0025-5718-99-01091-1
^Schwinger, J. (1951), "On gauge invariance and vacuum polarization", Physical Review, 82 (5): 664–679, Bibcode:1951PhRv...82..664S, doi:10.1103/PhysRev.82.664
See chapter 12 of Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001
Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions, (1964) Dover Publications, New York. ISBN 0-486-61272-4. (See Paragraph 6.4.10 for relationship to polygamma function.)
Davenport, Harold (1967). Multiplicative number theory. Lectures in advanced mathematics. Vol. 1. Chicago: Markham. Zbl 0159.06303.
Miller, Jeff; Adamchik, Victor S. (1998). "Derivatives of the Hurwitz Zeta Function for Rational Arguments". Journal of Computational and Applied Mathematics. 100 (2): 201–206. doi:10.1016/S0377-0427(98)00193-9.
Mező, István; Dil, Ayhan (2010). "Hyperharmonic series involving Hurwitz zeta function". Journal of Number Theory. 130 (2): 360–369. doi:10.1016/j.jnt.2009.08.005. hdl:2437/90539.