Imaging is the representation or reproduction of an object's form; especially a visual representation (i.e., the formation of an image).
Imaging technology is the application of materials and methods to create, preserve, or duplicate images.
Imaging science is a multidisciplinary field concerned with the generation, collection, duplication, analysis, modification, and visualization of images,[1] including imaging things that the human eye cannot detect. As an evolving field it includes research and researchers from physics, mathematics, electrical engineering, computer vision, computer science, and perceptual psychology.
Imagers are imaging sensors.
The foundation of imaging science as a discipline is the "imaging chain" – a conceptual model describing all of the factors which must be considered when developing a system for creating visual renderings (images). In general, the links of the imaging chain include:
Note that some imaging scientists will include additional "links" in their description of the imaging chain. For example, some will include the "source" of the energy which "illuminates" or interacts with the subject of the image. Others will include storage and/or transmission systems.
Subfields within imaging science include: image processing, computer vision, 3D computer graphics, animations, atmospheric optics, astronomical imaging, biological imaging, digital image restoration, digital imaging, color science, digital photography, holography, magnetic resonance imaging, medical imaging, microdensitometry, optics, photography, remote sensing, radar imaging, radiometry, silver halide, ultrasound imaging, photoacoustic imaging, thermal imaging, visual perception, and various printing technologies.
Imaging technology materials and methods include: