Inorganic imide

Summary

The inorganic imides are compounds containing an ion composed of nitrogen bonded to hydrogen with formula HN2−. Organic imides have the NH group, and two single or one double covalent bond to other atoms. The imides are related to the inorganic amides (H2N), the nitrides (N3−) and the nitridohydrides (N3−•H).

In addition to solid state imides, molecular imides are also known in dilute gases, where their spectrum can be studied.

When covalently bound to a metal, an imide ligand produces a transition metal imido complex.

When the hydrogen of the imide group is substituted by an organic group, an organoimide results. Complexes of actinide and rare earth elements with organoimides are known.[1]

Properties edit

Lithium imide undergoes a phase transition at 87 °C where it goes from an ordered to a more symmetric disordered state.[2]

Structure edit

Many imides have a cubic rock salt structure, with the metal and nitrogen occupying the main positions. The position of the hydrogen atom is hard to determine, but is disordered.

Many of the heavy metal simple imide molecules are linear. This is due to the filled 2p orbital of nitrogen donating electrons to an empty d orbital on the metal.[3]

Formation edit

Heating lithium amide with lithium hydride yields lithium imide and hydrogen gas. This reaction takes place as released ammonia reacts with lithium hydride.[2]

Heating magnesium amide to about 400 °C yields magnesium imide with the loss of ammonia. Magnesium imide itself decomposes if heated between 455 and 490 °C.[4]

Beryllium imide forms from beryllium amide when heated to 230 °C in a vacuum.[5]

When strontium metal is heated with ammonia at 750 °C, the dark yellow strontium imide forms.[6]

When barium vapour is heated with ammonia in an electrical discharge, the gaseous, molecular BaNH is formed.[7] Molecules ScNH, YNH, and LaNH are also known.[8][9]

Hydrogen storage edit

Inorganic imides are of interest because they can reversibly store hydrogen, which may be important for the hydrogen economy. For example, calcium imide can store 2.1% mass of hydrogen. Li2Ca(NH)2 reversibly stores hydrogen and release it at temperatures between 140 and 206 °C. It can reversibly hold 2.3% hydrogen.[10] When hydrogen is added to the imide, amides and hydrides are produced. When imides are heated, they can yield hydridonitrides or nitrides, but these may not easily reabsorb hydrogen.

List edit

Ionic edit

name formula structure space group unit cell references
Lithium imide Li2NH cubic Fm3m a=5.0742 [2]
Beryllium imide BeNH [5]
Magnesium imide MgNH hexagonal P6/m a = 11.567 Å c = 3.683Å Z=12 [4]
Lithium magnesium imide Li2Mg(NH)2 [10]
Si2N2(NH) [11]
K2Si(NH)3 amourphous [12]
K2Si2(NH)5 amourphous [12]
K2Si3(NH)7 amourphous [12]
potassium imido nitrido silicate K3Si6N5(NH)6 cubic P4332 a = 10.789 [11]
Calcium imide CaNH hexagonal Fm3m [10]
Lithium calcium imide Li2Ca(NH)2 hexagonal [10]
Magnesium calcium diimide MgCa(NH)2 cubic [13]
Lithium calcium magnesium imide Li4CaMg(NH)4 [10]
Strontium imide SrNH orthorhombic Pmna a =7.5770 b =3.92260 c =5.69652 Z=4 [6]
Tin amide imide Sn(NH2)2NH [14][15]
Barium imide BaNH tetragonal I4/mmm a=4.062 c=6.072 Z=2 [16]
Lanthanum imide La2(NH)3 rock salt a=5.32 [17]
Cerium imide CeNH [18]
Ytterbium imide YbNH cubic a=4.85 [19]
NH4[Hg3(NH)2](NO3)3 cubic P4132 a = 10.304, Z = 4 [20]
Thorium nitride imide Th2N2(NH) hexagonal P3m1 a = 3.886 c = 6.185 Å [21]

Molecular edit

name formula structure symmetry CAS references
B2(NH)3 polymer [22]
Nitroxyl HNO bent 14332-28-6
Al(NH2)(NH) polymer [22]
silicon dimide Si(NH)2
thionitrosyl hydride HNS bent 14616-59-2 [23]
sulfur diimide S(NH)2
Heptasulfur imide S7NH 293-42-5 [24]
1,2,3,4,5,7,6,8-Hexathiadiazocane

1,3-Hexasulfurdiimide

H2N2S6 1003-75-4
1,2,3,4,6,7,5,8-Hexathiadiazocane

1,4-Hexasulfurdiimide

H2N2S6 1003-76-5
1,2,3,5,6,7,4,8-Hexathiadiazocane

1,5-Hexasulfurdiimide

H2N2S6
1,2,3,5,7,4,6,8-Pentathiatriazocane H3N3S5 638-50-6
ScNH [8]
Ga2(NH)3 polymer [22]
YNH [8]
BaNH linear [3]
LaNH linear C∞v [9][25]
CeNH linear C∞v [25]
Uranimine nitride N≡U═N−H [26]
Uranimine dihydride HN═UH2 [26]

Molecular imines of other actinides called neptunimine and plutonimine have been postulated to exist in the gas phase or noble gas matrix.[27]

References edit

  1. ^ Schädle, Dorothea; Anwander, Reiner (2019). "Rare-earth metal and actinide organoimide chemistry". Chemical Society Reviews. 48 (24): 5752–5805. doi:10.1039/c8cs00932e. PMID 31720564. S2CID 207938163.
  2. ^ a b c Lowton, Rebecca L. (1999). Structural and thermogravimetric studies of alkali metal amides and imides (PhD thesis). Oxford University, UK.
  3. ^ a b Janczyk, Alexandra; Lichtenberger, Dennis L.; Ziurys, Lucy M. (February 2006). "Competition between Metal-Amido and Metal-Imido Chemistries in the Alkaline Earth Series: An Experimental and Theoretical Study of BaNH". Journal of the American Chemical Society. 128 (4): 1109–1118. doi:10.1021/ja053473k. ISSN 0002-7863. PMID 16433526.
  4. ^ a b Dolci, Francesco; Napolitano, Emilio; Weidner, Eveline; Enzo, Stefano; Moretto, Pietro; Brunelli, Michela; Hansen, Thomas; Fichtner, Maximilian; Lohstroh, Wiebke (7 February 2011). "Magnesium Imide: Synthesis and Structure Determination of an Unconventional Alkaline Earth Imide from Decomposition of Magnesium Amide" (PDF). Inorganic Chemistry. 50 (3): 1116–1122. doi:10.1021/ic1023778. PMID 21190329.
  5. ^ a b Jacobs, Herbert; Juza, Robert (November 1969). "Darstellung und Eigenschaften von Berylliumamid und -imid". Zeitschrift für anorganische und allgemeine Chemie (in German). 370 (5–6): 248–253. doi:10.1002/zaac.19693700507. ISSN 0044-2313.
  6. ^ a b Schultz‐Coulon, Verena; Irran, Elisabeth; Putz, Bernd; Schnick, Wolfgang (1999). "β-SrNH und β-SrND – Synthese und Kristallstrukturbestimmung mittels Röntgen- und Neutronenbeugung an Pulvern". Zeitschrift für anorganische und allgemeine Chemie. 625 (7): 1086–1092. doi:10.1002/(SICI)1521-3749(199907)625:7<1086::AID-ZAAC1086>3.0.CO;2-B.
  7. ^ Janczyk, Alexandra; Lichtenberger, Dennis L.; Ziurys, Lucy M. (February 2006). "Competition between Metal-Amido and Metal-Imido Chemistries in the Alkaline Earth Series: An Experimental and Theoretical Study of BaNH". Journal of the American Chemical Society. 128 (4): 1109–1118. doi:10.1021/ja053473k. PMID 16433526.
  8. ^ a b c Bhattacharyya, Soumen; Harrison, James F. (September 2020). "Electronic structure and bonding of the ScNH and YNH molecules". Chemical Physics Letters. 754: 137735. Bibcode:2020CPL...75437735B. doi:10.1016/j.cplett.2020.137735. S2CID 225222419.
  9. ^ a b Bhattacharyya, Soumen; Harrison, J. F. (1 September 2019). "Theoretical study of the electronic structure and bonding of LaNH". Chemical Physics Letters. 730: 551–556. Bibcode:2019CPL...730..551B. doi:10.1016/j.cplett.2019.06.042. S2CID 197120516.
  10. ^ a b c d e Verbraeken, Maarten Christiaan (February 2009). Doped Alkaline Earth (nitride) Hydrides (Thesis). University of St Andrews. p. 19. hdl:10023/714.
  11. ^ a b Peters, D.; Paulus, E. F.; Jacobs, H. (1990). "Darstellung und Kristallstruktur eines Kaliumimidonitridosilicats, K3Si6N5(NH)6". Zeitschrift für anorganische und allgemeine Chemie (in German). 584 (1): 129–137. doi:10.1002/zaac.19905840112. ISSN 0044-2313.
  12. ^ a b c Ali, S. I. (December 1970). "Reactions of Silicon Tetrabromide and -iodide with Potassium Amide in liquid ammonia". Zeitschrift für anorganische und allgemeine Chemie (in German). 379 (1): 68–71. doi:10.1002/zaac.19703790112. ISSN 0044-2313.
  13. ^ Liu, Yongfeng; Liu, Tao; Xiong, Zhitao; Hu, Jianjiang; Wu, Guotao; Chen, Ping; Wee, Andrew T. S.; Yang, Ping; Murata, Kenji; Sakata, Ko (November 2006). "Synthesis and Structural Characterization of a New Alkaline Earth Imide: MgCa(NH)2". European Journal of Inorganic Chemistry. 2006 (21): 4368–4373. doi:10.1002/ejic.200600492.
  14. ^ Watney, Nicholas S. P.; Gál, Zoltán A.; Webster, Matthew D. S.; Clarke, Simon J. (2005). "The first ternary tin(ii) nitride: NaSnN". Chemical Communications (33): 4190–2. doi:10.1039/b505208d. ISSN 1359-7345. PMID 16100599.
  15. ^ Maya, Leon (May 1992). "Preparation of tin nitride via an amide-imide intermediate". Inorganic Chemistry. 31 (10): 1958–1960. doi:10.1021/ic00036a044. ISSN 0020-1669.
  16. ^ Wegner, B.; Essmann, R.; Jacobs, H.; Fischer, P. (December 1990). "Synthesis of barium imide from the elements and orientational disorder of anions in BaND studied by neutron diffraction from 8 to 294 K". Journal of the Less Common Metals. 167 (1): 81–90. doi:10.1016/0022-5088(90)90291-Q.
  17. ^ Jacobs, H; Gieger, B; Hadenfeldt, C (March 1979). "Über das system kalium/lanthan/ammoniak". Journal of the Less Common Metals (in German). 64 (1): 91–99. doi:10.1016/0022-5088(79)90136-X.
  18. ^ Imamura, Hayao; Kawasoe, Masahiro; Imayoshi, Kyouya; Sakata, Yoshihisa (2015). "Preparation and Some Properties of Nanostructural Rare Earth Nitrides by Using the Reaction of Hydrides with Ammonia". International Journal of Theoretical and Applied Nanotechnology. 3: 1–8. doi:10.11159/ijtan.2015.001.
  19. ^ Imamura, Hayao (2000), "Chapter 182 The metals and alloys (prepared utilizing liquid ammonia solutions) in catalysis II", The Role of Rare Earths in Catalysis, Handbook on the Physics and Chemistry of Rare Earths, vol. 29, Elsevier, pp. 45–74, doi:10.1016/s0168-1273(00)29005-3, ISBN 978-0-444-50472-2, retrieved 2020-11-10
  20. ^ Nockemann, Peter; Meyer, Gerd (2002). "Bildung von NH4[Hg3(NH)2](NO3)3 und Umwandlung in [Hg2N](NO3)". Zeitschrift für Anorganische und Allgemeine Chemie. 628 (12): 2709–2714. doi:10.1002/1521-3749(200212)628:12<2709::AID-ZAAC2709>3.0.CO;2-P.
  21. ^ Silva, G. W. Chinthaka; Yeamans, Charles B.; Weck, Philppe F.; Hunn, John D.; Cerefice, Gary S.; Sattelberger, Alfred P.; Czerwinski, Ken R. (2012-03-05). "Synthesis and Characterization of Th 2 N 2 (NH) Isomorphous to Th 2 N 3". Inorganic Chemistry. 51 (5): 3332–3340. doi:10.1021/ic300025b. ISSN 0020-1669. PMID 22360445.
  22. ^ a b c Janik, Jerzy F.; Wells, Richard L. (January 1996). "Gallium Imide, {Ga(NH) 3/2 } n , a New Polymeric Precursor for Gallium Nitride Powders". Chemistry of Materials. 8 (12): 2708–2711. doi:10.1021/cm960419h. ISSN 0897-4756.
  23. ^ Nguyen, Minh Tho; Vanquickenborne, L.G.; Plisnier, Michel; Flammang, Robert (January 1993). "A mass spectrometric and ab initio molecular orbital characterization of thionitrosyl hydride (H-N=S)". Molecular Physics. 78 (1): 111–119. Bibcode:1993MolPh..78..111N. doi:10.1080/00268979300100111. ISSN 0026-8976.
  24. ^ Mendelsohn, M.H.; Jolly, W.L. (January 1973). "Reactions of the heptasulfur imide anion". Journal of Inorganic and Nuclear Chemistry. 35 (1): 95–99. doi:10.1016/0022-1902(73)80614-1. S2CID 98171750.
  25. ^ a b Zhang, Yuchen; Nyambo, Silver; Yang, Dong-Sheng (2018-12-21). "Mass-analyzed threshold ionization spectroscopy of lanthanide imide LnNH (Ln = La and Ce) radicals from N–H bond activation of ammonia". The Journal of Chemical Physics. 149 (23): 234301. Bibcode:2018JChPh.149w4301Z. doi:10.1063/1.5064597. ISSN 0021-9606. PMID 30579310. S2CID 58639516.
  26. ^ a b Wang, Xuefeng; Andrews, Lester; Vlaisavljevich, Bess; Gagliardi, Laura (2011-04-18). "Combined Triple and Double Bonds to Uranium: The N≡U═N−H Uranimine Nitride Molecule Prepared in Solid Argon". Inorganic Chemistry. 50 (8): 3826–3831. doi:10.1021/ic2003244. ISSN 0020-1669. PMID 21405096.
  27. ^ Li, Peng; Niu, Wenxia; Gao, Tao (2015-11-25). "Systematic analysis of structural and spectroscopic properties of neptunimine (HN=NpH2) and plutonimine (HN=PuH2)". Journal of Molecular Modeling. 21 (12): 316. doi:10.1007/s00894-015-2856-1. ISSN 0948-5023. PMID 26608606. S2CID 7587370.