Intermetallic particle

Summary

Intermetallic particles form during solidification of metallic alloys.

Aluminium alloys edit

Al-Si-Cu-Mg alloys edit

Al-Si-Cu-Mg alloys form Al5FeSi- plate like intermetallic phases like -Al8Fe2Si, Al2Cu, etc. The size and morphology of these intermetallic phases in these alloys control the mechanical properties of these alloys, especially strength and ductility.[1] The size of these phases depends on the secondary dendrite arm spacing,[2] as well as the Si content of the alloy,[3][4][5][6] of the primary phase in the micro structure.

Phases and crystal structures edit

Phase Structure Space Group a b c α β γ ..
α-Al8Fe2Si[7] hexagonal p63/mmc(194) 12.404 12.404 26.234 90 90 120 ..
β-Al5FeSi[8] monoclinic 2/m 6.16760 6.1661 20.8093 .. .. 91 ..
Al2Cu .. .. .. .. .. .. .. .. ..

Magnesium alloys edit

WE 43 edit

In-situ synchrotron diffraction experiment[9] on Electron alloy-WE 43 (Mg4Y3Nd) shows that this alloy form the following intermetallic phases ;Mg12Nd, Mg14Y4Nd, and Mg24Y5.

Phases and crystal structures edit

Phase Structure Space Group a b c α β γ ..
Mg41Nd5 .. .. .. .. .. .. .. .. ..
β-Mg14Nd2Y[10] face centered cubic 2.2 nm .. .. ..
Mg24Y5[10] body centered cubic .. 1.12 nm .. .. .. .. .. ..

AZ 91 edit

References edit

  1. ^ Caceres, C. H. Svensson, I. L. Taylor, J. A. (2003). "Strength-ductility behaviour of Al-Si-Cu-Mg casting alloys in T6 temper". International Journal of Cast Metals Research. 15 (5): 531–543. doi:10.1080/13640461.2003.11819539.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ Sivarupan, Tharmalingam; Caceres, Carlos H.; Taylor, John A. (9 May 2013). "Alloy Composition and Dendrite Arm Spacing in Al-Si-Cu-Mg-Fe Alloys". Metallurgical and Materials Transactions A. 44 (9): 4071–4080. Bibcode:2013MMTA...44.4071S. doi:10.1007/s11661-013-1768-x. S2CID 135926219.
  3. ^ Sivarupan, Tharmalingam; Caceres, Carlos H.; Taylor, John A. (July 2013). "Effect of Si Content on the Size of Fe-Rich Intermetallic Particles in Al-xSi-0.8Fe Alloys". Materials Science Forum. 765: 107–111. CiteSeerX 10.1.1.1001.8916. doi:10.4028/www.scientific.net/MSF.765.107. S2CID 136622162.
  4. ^ Sivarupan, T.; Taylor, J. A.; Cáceres, C. H. (2014). "Effect of Si and Cu Content on the Size of Intermetallic Phase Particles in Al-Si-Cu-Mg-Fe Alloys". Shape/Tiryakioǧlu: 137–143. doi:10.1002/9781118888100.ch17. ISBN 9781118888100.
  5. ^ Sivarupan, Tharmalingam (2014). Ductility and solidification issues in Al-Si-Cu-Mg alloys (PDF) (PhD thesis). School of Mechanical and Mining Engineering, The University of Queensland. doi:10.14264/uql.2015.91.
  6. ^ Sivarupan, Tharmalingam; Taylor, John Andrew; Cáceres, Carlos Horacio (25 February 2015). "SDAS, Si and Cu Content, and the Size of Intermetallics in Al-Si-Cu-Mg-Fe Alloys". Metallurgical and Materials Transactions A. 46 (5): 2082–2107. Bibcode:2015MMTA...46.2082S. doi:10.1007/s11661-015-2808-5. S2CID 136803392.
  7. ^ R.N. Corby and P.J. Black: Acta Crystallogr. Sect. B, 1977, vol. 33, pp. 3468–75.
  8. ^ V. Hansen, B. Hauback, M. Sundberg, C. Romming, and J. Gjonnes: Acta Crystallogr. Sect. B, 1998, vol. 54, pp. 351–57.
  9. ^ Tolnai, D.; Mendis, C.L.; Stark, A.; Szakács, G.; Wiese, B.; Kainer, K.U.; Hort, N. (July 2013). "In situ synchrotron diffraction of the solidification of Mg4Y3Nd" (PDF). Materials Letters. 102–103: 62–64. doi:10.1016/j.matlet.2013.03.110.
  10. ^ a b "Archived copy" (PDF). Archived from the original (PDF) on 2014-07-15. Retrieved 2015-04-27.{{cite web}}: CS1 maint: archived copy as title (link)