Interplanetary dust cloud

Summary

Artist's concept of a view from an exoplanet, with light from an extrasolar interplanetary dust cloud

The interplanetary dust cloud, or zodiacal cloud, consists of cosmic dust (small particles floating in outer space) that pervades the space between planets within planetary systems, such as the Solar System.[1] This system of particles has been studied for many years in order to understand its nature, origin, and relationship to larger bodies.

In the Solar System, the interplanetary dust particles have a role in scattering sunlight and in emitting thermal radiation, which is the most prominent feature of the night sky's radiation, with wavelengths ranging 5–50 μm.[2] The particle sizes of grains characterizing the infrared emission near Earth's orbit typically range 10–100 μm.[3]

The total mass of the interplanetary dust cloud is approximately the mass of an asteroid of radius 15 km (with density of about 2.5 g/cm3).[4] Straddling the zodiac along the ecliptic, this dust cloud is visible as the zodiacal light in a moonless and naturally dark sky and is best seen sunward during astronomical twilight.

The Pioneer spacecraft observations in the 1970s linked the zodiacal light with the interplanetary dust cloud in the Solar System.[5] Also, the VBSDC instrument on the New Horizons probe was designed to detect impacts of the dust from the zodiacal cloud in the Solar System.[6]

Origin

The sources of interplanetary dust particles (IDPs) include at least: asteroid collisions, cometary activity and collisions in the inner Solar System, Kuiper belt collisions, and interstellar medium grains (Backman, D., 1997). Indeed, one of the longest-standing controversies debated in the interplanetary dust community revolves around the relative contributions to the interplanetary dust cloud from asteroid collisions and cometary activity.

Life cycle of a particle

The main physical processes "affecting" (destruction or expulsion mechanisms) interplanetary dust particles are: expulsion by radiation pressure, inward Poynting-Robertson (PR) radiation drag, solar wind pressure (with significant electromagnetic effects), sublimation, mutual collisions, and the dynamical effects of planets (Backman, D., 1997).

The lifetimes of these dust particles are very short compared to the lifetime of the Solar System. If one finds grains around a star that is older than about 10,000,000 years, then the grains must have been from recently released fragments of larger objects, i.e. they cannot be leftover grains from the protoplanetary disk (Backman, private communication).[citation needed] Therefore, the grains would be "later-generation" dust. The zodiacal dust in the Solar System is 99.9% later-generation dust and 0.1% intruding interstellar medium dust. All primordial grains from the Solar System's formation were removed long ago.

Particles which are affected primarily by radiation pressure are known as "beta meteoroids". They are generally less than 1.4 × 10−12 g and are pushed outward from the Sun into interstellar space.[7]

Cloud structures

The interplanetary dust cloud has a complex structure (Reach, W., 1997). Apart from a background density, this includes:

  • At least 8 dust trails—their source is thought to be short-period comets.
  • A number of dust bands, the sources of which are thought to be asteroid families in the main asteroid belt. The three strongest bands arise from the Themis family, the Koronis family, and the Eos family. Other source families include the Maria, Eunomia, and possibly the Vesta and/or Hygiea families (Reach et al. 1996).
  • At least 2 resonant dust rings are known (for example, the Earth-resonant dust ring, although every planet in the Solar System is thought to have a resonant ring with a "wake") (Jackson and Zook, 1988, 1992) (Dermott, S.F. et al., 1994, 1997)

Dust collection on Earth

In 1951, Fred Whipple predicted that micrometeorites smaller than 100 micrometers in diameter might be decelerated on impact with the Earth's upper atmosphere without melting.[8] The modern era of laboratory study of these particles began with the stratospheric collection flights of D. E. Brownlee and collaborators in the 1970s using balloons and then U-2 aircraft.[9]

Although some of the particles found were similar to the material in present-day meteorite collections, the nanoporous nature and unequilibrated cosmic-average composition of other particles suggested that they began as fine-grained aggregates of nonvolatile building blocks and cometary ice.[10][11] The interplanetary nature of these particles was later verified by noble gas[12] and solar flare track[13] observations.

In that context a program for atmospheric collection and curation of these particles was developed at Johnson Space Center in Texas.[14] This stratospheric micrometeorite collection, along with presolar grains from meteorites, are unique sources of extraterrestrial material (not to mention being small astronomical objects in their own right) available for study in laboratories today.

Experiments

Spacecraft that have carried dust detectors include Pioneer 10, Pioneer 11, Ulysses (heliocentric orbit out to the distance of Jupiter), Galileo (Jupiter Orbiter), Cassini (Saturn orbiter), and New Horizons (see Venetia Burney Student Dust Counter).[15]

See also

References

  1. ^ "What scientists found after sifting through dust in the solar system - bri". EurekAlert!. NASA. 12 March 2019. Retrieved 12 March 2019.
  2. ^ Levasseur-Regourd, A.C., 1996
  3. ^ Backman, D., 1997
  4. ^ Pavlov, Alexander A. (1999). "Irradiated interplanetary dust particles as a possible solution for the deuterium/hydrogen paradox of Earth's oceans". Journal of Geophysical Research: Planets. 104 (E12): 30725–28. Bibcode:1999JGR...10430725P. doi:10.1029/1999JE001120. PMID 11543198.
  5. ^ Hannter; et al. (1976). "Pioneer 10 observations of zodiacal light brightness near the ecliptic - Changes with heliocentric distance".
  6. ^ [1]
  7. ^ "Micrometeorite Background". GENESIS Discovery 5 Mission. Caltech. Archived from the original on 26 August 2007. Retrieved 4 August 2008.
  8. ^ Whipple, Fred L. (December 1950). "The Theory of Micro-Meteorites. Part I. In an Isothermal Atmosphere". Proceedings of the National Academy of Sciences of the United States of America. 36 (12): 687–695. Bibcode:1950PNAS...36..687W. doi:10.1073/pnas.36.12.687. PMC 1063272. PMID 16578350.
  9. ^ Brownlee, D. E. (December 1977). "Interplanetary dust - Possible implications for comets and presolar interstellar grains". In: Protostars and Planets: Studies of Star Formation and of the Origin of the Solar System. (A79-26776 10-90) Tucson: 134–150. Bibcode:1978prpl.conf..134B.
  10. ^ P. Fraundorf, D. E. Brownlee, and R. M. Walker (1982) Laboratory studies of interplanetary dust, in Comets (ed. L. Wilkening, U. Arizona Press, Tucson) pp. 383-409.
  11. ^ Walker, R. M. (January 1986). "Laboratory studies of interplanetary dust". In NASA. 2403: 55. Bibcode:1986NASCP2403...55W.
  12. ^ Hudson, B.; Flynn, G. J.; Fraundorf, P.; Hohenberg, C. M.; Shirck, J. (January 1981). "Noble Gases in Stratospheric Dust Particles: Confirmation of Extraterrestrial Origin". Science. 211 (4480): 383–386(SciHomepage). Bibcode:1981Sci...211..383H. doi:10.1126/science.211.4480.383. PMID 17748271.
  13. ^ Bradley, J. P.; Brownlee, D. E.; Fraundorf, P. (December 1984). "Discovery of nuclear tracks in interplanetary dust". Science. 226 (4681): 1432–1434.ResearchsupportedbyMcCroneAssociates. Bibcode:1984Sci...226.1432B. doi:10.1126/science.226.4681.1432. ISSN 0036-8075. PMID 17788999. S2CID 27703897.
  14. ^ "Cosmic Dust". NASA – Johnson Space Center program, Cosmic Dust Lab. 6 January 2016. Retrieved 14 March 2016.
  15. ^ [2]

Further reading

  • Jackson A.A.; Zook, H.A. (1988). "A Solar System Dust Ring with the Earth as its Shepherd". Nature. 337 (6208): 629–631. Bibcode:1989Natur.337..629J. doi:10.1038/337629a0. S2CID 4351090.
  • Jackson A.A.; Zook, H.A. (1992). "Orbital evolution of dust particles from comets and asteroids". Icarus. 97 (1): 70–84. Bibcode:1992Icar...97...70J. doi:10.1016/0019-1035(92)90057-E.
  • May, Brian Harold (2008). A Survey of Radial Velocities in the Zodiacal Dust Cloud (PhD thesis). New York: Springer. ISBN 978-0-387-77705-4.
  • Backman, Dana (1997). "Exozody Workshop, NASA-Ames, October 23–25, 1997". Extrasolar Zodiacal Emission - NASA Study Panel Report.
  • NASA Panel Report on Extrasolar Zodiacal Emission
  • Dermott, S.F.; Jayaraman, S.; Xu, Y.L.; Gustafson, A.A.S.; Liou, J.C. (30 June 1994). "A circumsolar ring of asteroid dust in resonant lock with the Earth". Nature. 369 (6483): 719–23. Bibcode:1994Natur.369..719D. doi:10.1038/369719a0. S2CID 4345910.
  • Dermott, S.F. (1997). "Signatures of Planets in Zodiacal Light". Extrasolar Zodiacal Emission - NASA Study Panel Report.
  • Levasseur-Regourd, A.C. (1996). "Optical and Thermal Properties of Zodiacal Dust". Physics, Chemistry and Dynamics of Interplanetary Dust, ASP Conference series, Vol 104. pp. 301–.
  • Reach, W. (1997). "General Structure of the Zodiacal Dust Cloud". Extrasolar Zodiacal Emission - NASA Study Panel Report.
  • Reach, W.T.; Franz, B.A.; Weiland, J.L. (1997). "The Three-Dimensional Structure of the Zodiacal Dust Bands". Icarus. 127 (2): 461–484. Bibcode:1997Icar..127..461R. doi:10.1006/icar.1997.5704.