BREAKING NEWS

## Summary

Spectral irradiance is the irradiance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The two forms have different dimensions and units: spectral irradiance of a frequency spectrum is measured in watts per square metre per hertz (W⋅m−2⋅Hz−1), while spectral irradiance of a wavelength spectrum is measured in watts per square metre per metre (W⋅m−3), or more commonly watts per square metre per nanometre (W⋅m−2⋅nm−1).

## Mathematical definitions

Irradiance of a surface, denoted Ee ("e" for "energetic", to avoid confusion with photometric quantities), is defined as[2]

${\displaystyle E_{\mathrm {e} }={\frac {\partial \Phi _{\mathrm {e} }}{\partial A}},}$

where

If we want to talk about the radiant flux emitted by a surface, we speak of radiant exitance.

Spectral irradiance in frequency of a surface, denoted Ee,ν, is defined as[2]

${\displaystyle E_{\mathrm {e} ,\nu }={\frac {\partial E_{\mathrm {e} }}{\partial \nu }},}$

where ν is the frequency.

Spectral irradiance in wavelength of a surface, denoted Ee,λ, is defined as[2]

${\displaystyle E_{\mathrm {e} ,\lambda }={\frac {\partial E_{\mathrm {e} }}{\partial \lambda }},}$

where λ is the wavelength.

## Property

Irradiance of a surface is also, according to the definition of radiant flux, equal to the time-average of the component of the Poynting vector perpendicular to the surface:

${\displaystyle E_{\mathrm {e} }=\langle |\mathbf {S} |\rangle \cos \alpha ,}$

where

• ⟨ • ⟩ is the time-average;
• S is the Poynting vector;
• α is the angle between a unit vector normal to the surface and S.

For a propagating sinusoidal linearly polarized electromagnetic plane wave, the Poynting vector always points to the direction of propagation while oscillating in magnitude. The irradiance of a surface is then given by[3]

${\displaystyle E_{\mathrm {e} }={\frac {n}{2\mu _{0}\mathrm {c} }}E_{\mathrm {m} }^{2}\cos \alpha ={\frac {n\varepsilon _{0}\mathrm {c} }{2}}E_{\mathrm {m} }^{2}\cos \alpha ={\frac {n}{2Z_{0}}}E_{\mathrm {m} }^{2}\cos \alpha ,}$

where

This formula assumes that the magnetic susceptibility is negligible; i.e. that μr ≈ 1 where μr is the magnetic permeability of the propagation medium. This assumption is typically valid in transparent media in the optical frequency range.

## Point source

A point source of light produces spherical wavefronts. The irradiance in this case varies inversely with the square of the distance from the source.

${\displaystyle E={\frac {P}{A}}={\frac {P}{4\pi r^{2}}}.\,}$

where

• r is the distance;
• P is the radiant flux;
• A is the surface area of a sphere of radius r.

For quick approximations, this equation indicates that doubling the distance reduces irradiation to one quarter; or similarly, to double irradiation, reduce the distance to 0.7.

In astronomy, stars are routinely treated as point sources even though they are much larger than the Earth. This is a good approximation because the distance from even a nearby star to the Earth is much larger than the star's diameter. For instance, the irradiance of Alpha Centauri A (radiant flux: 1.5 L, distance: 4.34 ly) is about 2.7 × 10−8 W/m2 on Earth.

The global irradiance on a horizontal surface on Earth consists of the direct irradiance Ee,dir and diffuse irradiance Ee,diff. On a tilted plane, there is another irradiance component, Ee,refl, which is the component that is reflected from the ground. The average ground reflection is about 20% of the global irradiance. Hence, the irradiance Ee on a tilted plane consists of three components:[4]

${\displaystyle E_{\mathrm {e} }=E_{\mathrm {e} ,\mathrm {dir} }+E_{\mathrm {e} ,\mathrm {diff} }+E_{\mathrm {e} ,\mathrm {refl} }.}$

The integral of solar irradiance over a time period is called "solar exposure" or "insolation".[4][5]

Quantity Unit Dimension Notes
Name Symbol[nb 1] Name Symbol
Radiant energy density we joule per cubic metre J/m3 ML−1T−2 Radiant energy per unit volume.
Radiant flux Φe[nb 2] watt W = J/s ML2T−3 Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in Astronomy.
Spectral flux Φe,ν[nb 3] watt per hertz W/Hz ML2T −2 Radiant flux per unit frequency or wavelength. The latter is commonly measured in W⋅nm−1.
Φe,λ[nb 4] watt per metre W/m MLT−3
Radiant intensity Ie,Ω[nb 5] watt per steradian W/sr ML2T−3 Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity.
Spectral intensity Ie,Ω,ν[nb 3] watt per steradian per hertz W⋅sr−1⋅Hz−1 ML2T−2 Radiant intensity per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅nm−1. This is a directional quantity.
Ie,Ω,λ[nb 4] watt per steradian per metre W⋅sr−1⋅m−1 MLT−3
Radiance Le,Ω[nb 5] watt per steradian per square metre W⋅sr−1⋅m−2 MT−3 Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area. This is a directional quantity. This is sometimes also confusingly called "intensity".
Specific intensity
Le,Ω,ν[nb 3] watt per steradian per square metre per hertz W⋅sr−1⋅m−2⋅Hz−1 MT−2 Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. This is a directional quantity. This is sometimes also confusingly called "spectral intensity".
Le,Ω,λ[nb 4] watt per steradian per square metre, per metre W⋅sr−1⋅m−3 ML−1T−3
Flux density
Ee[nb 2] watt per square metre W/m2 MT−3 Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral flux density
Ee,ν[nb 3] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Irradiance of a surface per unit frequency or wavelength. This is sometimes also confusingly called "spectral intensity". Non-SI units of spectral flux density include jansky (1 Jy = 10−26 W⋅m−2⋅Hz−1) and solar flux unit (1 sfu = 10−22 W⋅m−2⋅Hz−1 = 104 Jy).
Ee,λ[nb 4] watt per square metre, per metre W/m3 ML−1T−3
Radiosity Je[nb 2] watt per square metre W/m2 MT−3 Radiant flux leaving (emitted, reflected and transmitted by) a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral radiosity Je,ν[nb 3] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. This is sometimes also confusingly called "spectral intensity".
Je,λ[nb 4] watt per square metre, per metre W/m3 ML−1T−3
Radiant exitance Me[nb 2] watt per square metre W/m2 MT−3 Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity".
Spectral exitance Me,ν[nb 3] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Radiant exitance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. "Spectral emittance" is an old term for this quantity. This is sometimes also confusingly called "spectral intensity".
Me,λ[nb 4] watt per square metre, per metre W/m3 ML−1T−3
Radiant exposure He joule per square metre J/m2 MT−2 Radiant energy received by a surface per unit area, or equivalently irradiance of a surface integrated over time of irradiation. This is sometimes also called "radiant fluence".
Spectral exposure He,ν[nb 3] joule per square metre per hertz J⋅m−2⋅Hz−1 MT−1 Radiant exposure of a surface per unit frequency or wavelength. The latter is commonly measured in J⋅m−2⋅nm−1. This is sometimes also called "spectral fluence".
He,λ[nb 4] joule per square metre, per metre J/m3 ML−1T−2
1. ^ Standards organizations recommend that radiometric quantities should be denoted with suffix "e" (for "energetic") to avoid confusion with photometric or photon quantities.
2. Alternative symbols sometimes seen: W or E for radiant energy, P or F for radiant flux, I for irradiance, W for radiant exitance.
3. Spectral quantities given per unit frequency are denoted with suffix "ν" (Greek letter nu, not to be confused with a letter "v", indicating a photometric quantity.)
4. Spectral quantities given per unit wavelength are denoted with suffix "λ".
5. ^ a b Directional quantities are denoted with suffix "Ω".