Isotopes of bismuth

Summary

Bismuth (83Bi) has 41 known isotopes, ranging from 184Bi to 224Bi. Bismuth has no stable isotopes, but does have one very long-lived isotope; thus, the standard atomic weight can be given as 208.98040(1). Although bismuth-209 is now known to be radioactive, it has classically been considered to be a stable isotope because it has a half-life of approximately 2.01×1019 years, which is more than a billion times the age of the universe. Besides 209Bi, the most stable bismuth radioisotopes are 210mBi with a half-life of 3.04 million years, 208Bi with a half-life of 368,000 years and 207Bi, with a half-life of 32.9 years, none of which occurs in nature. All other isotopes have half-lives under 1 year, most under a day. Of naturally occurring radioisotopes, the most stable is radiogenic 210Bi with a half-life of 5.012 days. 210mBi is unusual for being a nuclear isomer with a half-life multiple orders of magnitude longer than that of the ground state.

Isotopes of bismuth (83Bi)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
207Bi synth 31.55 y β+ 207Pb
208Bi synth 3.68×105 y β+ 208Pb
209Bi 100% 2.01×1019 y α 205Tl
210Bi trace 5.012 d β 210Po
α 206Tl
210mBi synth 3.04×106 y α 206Tl
Standard atomic weight Ar°(Bi)

List of isotopes

edit
Nuclide
[n 1]
Historic
name
Z N Isotopic mass (Da)[4]
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 8]
Isotopic
abundance
Excitation energy[n 8]
184Bi[5] 83 101 184.00135(13)# 13(2) ms α 180Tl 3+#
184mBi 150(100)# keV 6.6(15) ms α 180Tl 10−#
185Bi[6] 83 102 184.99760(9)# 2.8+2.3
−1.0
 μs
p (92%) 184Pb (1/2+)
α (8%) 181Tl
185mBi 70(50)# keV 58(2) μs IT 185Bi (7/2−, 9/2−)
186Bi[7] 83 103 185.996623(18) 14.8(7) ms α 182Tl (3+)
β+? 186Pb
β+, SF (0.011%) (various)
186mBi 170(100)# keV 9.8(4) ms α 182Tl (10−)
β+? 186Pb
β+, SF (0.011%) (various)
187Bi[7] 83 104 186.993147(11) 37(2) ms α 183Tl (9/2−)
β+ (rare) 187Pb
187m1Bi 108(8) keV 370(20) μs α 183Tl (1/2+)
187m2Bi 252(3) keV 7(5) μs IT 187Bi (13/2+)
188Bi[7] 83 105 187.992276(12) 60(3) ms α 184Tl (3+)
β+ (rare) 188Pb
β+, SF (0.0014%) (various)
188m1Bi 66(30) keV >5 μs IT 184Tl 7+#
188m2Bi 153(30) keV 265(15) ms α 184Tl (10−)
β+ (rare) 188Pb
189Bi[7] 83 106 188.989195(22) 688(5) ms α 185Tl (9/2−)
β+? 189Pb
189m1Bi 184(5) keV 5.0(1) ms α (83%) 185Tl (1/2+)
IT (17%) 189Bi
189m2Bi 357.6(5) keV 880(50) ns IT 189Bi (13/2+)
190Bi[7] 83 107 189.988625(23) 6.3(1) s α (77%) 186Tl (3+)
β+ (23%) 190Pb
β+, SF (6×10-6%) (various)
190m1Bi 120(40) keV 6.2(1) s α (70%) 186Tl (10−)
β+ (30%) 190Pb
β+,SF (4×10-6%) (various)
190m2Bi 121(15) keV 175(8) ns IT 190Bi (5−)
190m3Bi 394(40) keV 1.3(8) μs IT 190Bi (8−)
191Bi[7] 83 108 190.985787(8) 12.4(3) s α (51%) 187Tl (9/2−)
β+ (49%) 191Pb
191m1Bi 242(4) keV 124(5) ms α (68%) 187Tl (1/2+)
IT (32%) 191Bi
β+ (rare) 191Pb
191m2Bi 429.7(5) keV 562(10) ns IT 191Bi (13/2+)
191m3Bi 1875(25)# keV 400(40) ns IT 191Bi 25/2-#
192Bi 83 109 191.98547(3) 34.6(9) s β+ (82%) 192Pb (3+)
α (18%) 188Tl
192mBi 150(30) keV 39.6(4) s β+ (90.8%) 192Pb (10−)
α (9.2%) 188Tl
193Bi 83 110 192.982947(8) 67(3) s β+ (95%) 193Pb (9/2−)
α (5%) 189Tl
193mBi 308(7) keV 3.2(6) s α (90%) 189Tl (1/2+)
β+ (10%) 193Pb
194Bi 83 111 193.982799(6) 95(3) s β+ (99.54%) 194Pb (3+)
α (.46%) 190Tl
194m1Bi 110(70) keV 125(2) s β+ 194Pb (6+, 7+)
α (rare) 190Tl
194m2Bi 230(90)# keV 115(4) s (10−)
195Bi 83 112 194.980649(6) 183(4) s β+ (99.97%) 195Pb (9/2−)
α (.03%) 191Tl
195m1Bi 399(6) keV 87(1) s β+ (67%) 195Pb (1/2+)
α (33%) 191Tl
195m2Bi 2311.4+X keV 750(50) ns (29/2−)
196Bi 83 113 195.980667(26) 5.1(2) min β+ (99.99%) 196Pb (3+)
α (.00115%) 192Tl
196m1Bi 166.6(30) keV 0.6(5) s IT 196Bi (7+)
β+ 196Pb
196m2Bi 270(3) keV 4.00(5) min (10−)
197Bi 83 114 196.978865(9) 9.33(50) min β+ (99.99%) 197Pb (9/2−)
α (10−4%) 193Tl
197m1Bi 690(110) keV 5.04(16) min α (55%) 193Tl (1/2+)
β+ (45%) 197Pb
IT (.3%) 197Bi
197m2Bi 2129.3(4) keV 204(18) ns (23/2−)
197m3Bi 2360.4(5)+X keV 263(13) ns (29/2−)
197m4Bi 2383.1(7)+X keV 253(39) ns (29/2−)
197m5Bi 2929.5(5) keV 209(30) ns (31/2−)
198Bi 83 115 197.979201(30) 10.3(3) min β+ 198Pb (2+, 3+)
198m1Bi 280(40) keV 11.6(3) min β+ 198Pb (7+)
198m2Bi 530(40) keV 7.7(5) s 10−
199Bi 83 116 198.977673(11) 27(1) min β+ 199Pb 9/2−
199m1Bi 667(4) keV 24.70(15) min β+ (98%) 199Pb (1/2+)
IT (2%) 199Bi
α (.01%) 195Tl
199m2Bi 1947(25) keV 0.10(3) μs (25/2+)
199m3Bi ~2547.0 keV 168(13) ns 29/2−
200Bi 83 117 199.978131(24) 36.4(5) min β+ 200Pb 7+
200m1Bi 100(70)# keV 31(2) min EC (90%) 200Pb (2+)
IT (10%) 200Bi
200m2Bi 428.20(10) keV 400(50) ms (10−)
201Bi 83 118 200.976995(13) 108(3) min β+ (99.99%) 201Pb 9/2−
α (10−4%) 197Tl
201m1Bi 846.34(21) keV 59.1(6) min EC (92.9%) 201Pb 1/2+
IT (6.8%) 201Bi
α (.3%) 197Tl
201m2Bi 1932.2+X keV 118(28) ns (25/2+)
201m3Bi 1971.2+X keV 105(75) ns (27/2+)
201m4Bi 2739.90(20)+X keV 124(4) ns (29/2−)
202Bi 83 119 201.977723(15) 1.72(5) h β+ 202Pb 5(+#)
α (10−5%) 198Tl
202m1Bi 615(7) keV 3.04(6) μs (10#)−
202m2Bi 2607.1(5) keV 310(50) ns (17+)
203Bi 83 120 202.976892(14) 11.76(5) h β+ 203Pb 9/2−
α (10−5%) 199Tl
203m1Bi 1098.14(7) keV 303(5) ms IT 203Bi 1/2+
203m2Bi 2041.5(6) keV 194(30) ns 25/2+
204Bi 83 121 203.977836(10) 11.22(10) h β+ 204Pb 6+
204m1Bi 805.5(3) keV 13.0(1) ms IT 204Bi 10−
204m2Bi 2833.4(11) keV 1.07(3) ms (17+)
205Bi 83 122 204.977385(5) 15.31(4) d β+ 205Pb 9/2−
206Bi 83 123 205.978499(8) 6.243(3) d β+ 206Pb 6(+)
206m1Bi 59.897(17) keV 7.7(2) μs (4+)
206m2Bi 1044.8(5) keV 890(10) μs (10−)
207Bi 83 124 206.9784706(26) 32.9(14) y β+ 207Pb 9/2−
207mBi 2101.49(16) keV 182(6) μs 21/2+
208Bi 83 125 207.9797421(25) 3.68(4)×105 y β+ 208Pb (5)+
208mBi 1571.1(4) keV 2.58(4) ms IT 208Bi (10)−
209Bi
[n 9][n 10]
83 126 208.9803986(15) 2.01(8)×1019 y
[n 11]
α 205Tl 9/2− 1.0000
210Bi Radium E 83 127 209.9841202(15) 5.012(5) d β 210Po 1− Trace[n 12]
α (1.32×10−4%) 206Tl
210mBi 271.31(11) keV 3.04(6)×106 y α 206Tl 9−
211Bi Actinium C 83 128 210.987269(6) 2.14(2) min α (99.72%) 207Tl 9/2− Trace[n 13]
β (.276%) 211Po
211mBi 1257(10) keV 1.4(3) μs (25/2−)
212Bi Thorium C 83 129 211.991285(2) 60.55(6) min β (64.05%) 212Po 1(−) Trace[n 14]
α (35.94%) 208Tl
β, α (.014%) 208Pb
212m1Bi 250(30) keV 25.0(2) min α (67%) 208Tl (9−)
β (33%) 212mPo
β, α (.3%) 208Pb
212m2Bi 2200(200)# keV 7.0(3) min >16
213Bi
[n 15][n 16]
83 130 212.994384(5) 45.59(6) min β (97.91%) 213Po 9/2− Trace[n 17]
α (2.09%) 209Tl
214Bi Radium C 83 131 213.998711(12) 19.9(4) min β (99.97%) 214Po 1− Trace[n 12]
α (.021%) 210Tl
β, α (.003%) 210Pb
215Bi 83 132 215.001749(6) 7.6(2) min β 215Po (9/2−) Trace[n 13]
215mBi 1347.5(25) keV 36.9(6) s IT (76.9%) 215Bi (25/2−)
β (23.1%) 215Po
216Bi 83 133 216.006306(12) 2.17(5) min β 216Po (6−, 7−)
216mBi 24(19) keV 6.6(21) min β 216Po 3−#
217Bi 83 134 217.009372(19) 98.5(8) s β 217Po 9/2−#
217mBi 1480(40) keV 2.70(6) μs IT 217Bi 25/2−#
218Bi 83 135 218.014188(29) 33(1) s β 218Po (6−, 7−, 8−)
219Bi 83 136 219.01752(22)# 8.7(29) s β 219Po 9/2−#
220Bi 83 137 220.02250(32)# 9.5(57) s β 220Po 1−#
221Bi 83 138 221.02598(32)# 2# s β? 221Po 9/2−#
β, n? 220Po
222Bi 83 139 222.03108(32)# 3# s β? 222Po 1−#
β, n? 221Po
223Bi 83 140 223.03461(43)# 1# s β? 223Po 9/2−#
β, n? 222Po
224Bi 83 141 224.03980(43)# 1# s β? 224Po 1−#
β, n? 223Po
This table header & footer:
  1. ^ mBi – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition


    p: Proton emission
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. ^ Formerly believed to be final decay product of 4n+1 decay chain
  10. ^ Primordial radioisotope, also some is radiogenic from the extinct nuclide 237Np
  11. ^ Formerly believed to be the heaviest stable nuclide
  12. ^ a b Intermediate decay product of 238U
  13. ^ a b Intermediate decay product of 235U
  14. ^ Intermediate decay product of 232Th
  15. ^ Used in medicine such as for cancer treatment.
  16. ^ A byproduct of thorium reactors via 233U.
  17. ^ Intermediate decay product of 237Np

Bismuth-213

edit

Bismuth-213 (213Bi) has a half-life of 45 minutes and decays via alpha emission. Commercially, bismuth-213 can be produced by bombarding radium with bremsstrahlung photons from a linear particle accelerator, which populates its progenitor actinium-225. In 1997, an antibody conjugate with 213Bi was used to treat patients with leukemia. This isotope has also been tried in targeted alpha therapy (TAT) program to treat a variety of cancers.[8] Bismuth-213 is also found in the decay chain of uranium-233, which is the fuel bred by thorium reactors.

References

edit
  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Bismuth". CIAAW. 2005.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. ^ Andreyev, A. N.; Ackermann, D.; Heßberger, F. P.; Hofmann, S.; Huyse, M.; Kojouharov, I.; Kindler, B.; Lommel, B.; Münzenberg, G.; Page, R. D.; Vel, K. Van de; Duppen, P. Van; Heyde, K. (1 October 2003). "α-decay spectroscopy of light odd-odd Bi isotopes - II: 186Bi and the new nuclide 184Bi" (PDF). The European Physical Journal A. 18 (1): 55–64. Bibcode:2003EPJA...18...55A. doi:10.1140/epja/i2003-10051-1. ISSN 1434-601X. S2CID 122369569. Retrieved 20 June 2023.
  6. ^ Doherty, D. T.; Andreyev, A. N.; Seweryniak, D.; Woods, P. J.; Carpenter, M. P.; Auranen, K.; Ayangeakaa, A. D.; Back, B. B.; Bottoni, S.; Canete, L.; Cubiss, J. G.; Harker, J.; Haylett, T.; Huang, T.; Janssens, R. V. F.; Jenkins, D. G.; Kondev, F. G.; Lauritsen, T.; Lederer-Woods, C.; Li, J.; Müller-Gatermann, C.; Potterveld, D.; Reviol, W.; Savard, G.; Stolze, S.; Zhu, S. (12 November 2021). "Solving the Puzzles of the Decay of the Heaviest Known Proton-Emitting Nucleus 185Bi". Physical Review Letters. 127 (20): 202501. Bibcode:2021PhRvL.127t2501D. doi:10.1103/PhysRevLett.127.202501. hdl:20.500.11820/ac1e5604-7bba-4a25-a538-795ca4bdc875. ISSN 0031-9007. PMID 34860042. S2CID 244089059. Retrieved 20 June 2023.
  7. ^ a b c d e f Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641. S2CID 233794940.
  8. ^ Imam, S (2001). "Advancements in cancer therapy with alpha-emitters: a review". International Journal of Radiation Oncology, Biology, Physics. 51 (1): 271–278. doi:10.1016/S0360-3016(01)01585-1. PMID 11516878.
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.