Julyan Cartwright

Summary

Julyan Cartwright is an interdisciplinary physicist working in Granada, Spain at the Andalusian Earth Sciences Institute[3] of the CSIC (Spanish National Research Council) and affiliated with the Carlos I Institute of Theoretical and Computational Physics[4] at the University of Granada.

Julyan Cartwright
Born
CitizenshipBritish
Alma materUniversity of Newcastle upon Tyne,
Queen Mary College, University of London
Scientific career
Fieldsdynamical systems, nonlinear science, complexity, pattern formation
InstitutionsCSIC (Spanish National Research Council)
Doctoral advisorDavid Arrowsmith[1]
Other academic advisorsIan C. Percival,
Keith Runcorn,
David Tritton

He is known for his research[5] on how form and pattern emerge in nature,[6] the dynamics of natural systems,[7] across disciplinary boundaries, including his studies of the dynamics of passive scalars in chaotic advection of fluids,[8][9] bailout embeddings,[10] the Bogdanov map,[11] the influence of fluid mechanics on the development of vertebrate left-right asymmetry,[12] self-organization of biomineralization structures of mollusc shell including mother of pearl (nacre)[13][14][15] and cuttlebone,[16] excitable media,[17] and chemobrionics:[18] self-assembling porous precipitate structures, such as chemical gardens,[19] brinicles,[20] and submarine hydrothermal vents.[21]

He is among the researchers in the Stanford list of the World's top 2% most cited scientists.[22][23] He is chair of the international COST action Chemobionics[24] and chair of the scientific advisory committee to the international conference Dynamics Days Europe.[25] He is editor of the Cambridge University Press journal Elements in Dynamical Systems.[26]

Press interest in his research has highlighted his work on chemical gardens,[27][28] on pitch perception in the auditory system,[29][30] on how symmetry is broken so that the heart is on the left,[31][32] on how bees construct spiral bee combs,[33][34][35] on the formation of nacre[36] and pearls,[37][38][39][40][41] on how brinicle ice tubes grow both on Earth[42][43][44] and on Jupiter's moon, Europa,[45] on the information content of complex self-assembled materials[46][47][48][49] on the rogue wave[50] nature of Hokusai's famous artwork the Great Wave off Kanagawa,[51][52][53] on the Möbius strip before Möbius,[54][55] on the possible melting of oceanic methane hydrate deposits owing to climate change,[56] and on the origin of life at alkaline submarine hydrothermal vents[57] and their relevance to astrobiology.[58]

References edit

  1. ^ Julyan Cartwright at the Mathematics Genealogy Project
  2. ^ "Julyan Cartwright - Personal history".
  3. ^ "IACT Staff - Julyan Cartwright".
  4. ^ "List of members of the iC1".
  5. ^ "Julyan Cartwright - Google Scholar".
  6. ^ Čejková, Jitka; Cartwright, Julyan H. E. (May 2022). "Guest Editorial - Chemobrionics and Systems Chemistry". ChemSystemsChem. 4 (3). doi:10.1002/syst.202200002. S2CID 246779143.
  7. ^ "The dynamics of natural systems".
  8. ^ Cartwright, Julyan H. E.; Feingold, Mario; Piro, Oreste (1996-06-10). "Chaotic advection in three-dimensional unsteady incompressible laminar flow". Journal of Fluid Mechanics. 316. Cambridge University Press (CUP): 259–284. arXiv:chao-dyn/9504012. doi:10.1017/s0022112096000535. ISSN 0022-1120. S2CID 930710.
  9. ^ Babiano, Armando; Cartwright, Julyan H. E.; Piro, Oreste; Provenzale, Antonello (2000-06-19). "Dynamics of a Small Neutrally Buoyant Sphere in a Fluid and Targeting in Hamiltonian Systems". Physical Review Letters. 84 (25). American Physical Society (APS): 5764–5767. arXiv:nlin/0007033. Bibcode:2000PhRvL..84.5764B. doi:10.1103/physrevlett.84.5764. ISSN 0031-9007. PMID 10991049. S2CID 35884368.
  10. ^ Cartwright, Julyan H. E.; Magnasco, Marcelo O.; Piro, Oreste (2002-04-03). "Bailout embeddings, targeting of invariant tori, and the control of Hamiltonian chaos". Physical Review E. 65 (4). American Physical Society (APS): 045203(R). arXiv:nlin/0111005. Bibcode:2002PhRvE..65d5203C. doi:10.1103/physreve.65.045203. ISSN 1063-651X. PMID 12005907. S2CID 23498762.
  11. ^ Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.; and Place, C. M. "The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System." Int. J. Bifurcation Chaos 3, 803–842, 1993.
  12. ^ Cartwright, J. H. E.; Piro, O.; Tuval, I. (2004-04-26). "Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates". Proceedings of the National Academy of Sciences. 101 (19): 7234–7239. Bibcode:2004PNAS..101.7234C. doi:10.1073/pnas.0402001101. ISSN 0027-8424. PMC 409902. PMID 15118088.
  13. ^ Checa, Antonio; Cartwright, Julyan; Willinger, Marc-Georg (2011). "Mineral bridges in nacre". Journal of Structural Biology. 176 (3): 330–339. doi:10.1016/j.jsb.2011.09.011. PMID 21982842.
  14. ^ Cartwright, J. H. E., Checa, A. G., Escribano, B., & Sainz-Díaz, C. I. (2009). Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal. Proceedings of the National Academy of Sciences, 106(26), 10499-10504.
  15. ^ Cartwright, J. H. E., & Checa, A. G. (2007). The dynamics of nacre self-assembly. Journal of the Royal Society Interface, 4(14), 491-504.
  16. ^ Checa, Antonio G.; Cartwright, Julyan H. E.; Sánchez-Almazo, Isabel; Andrade, José P.; Ruiz-Raya, Francisco (September 2015). "The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor". Scientific Reports. 5 (1): 11513. arXiv:1506.08290. Bibcode:2015NatSR...511513C. doi:10.1038/srep11513. ISSN 2045-2322. PMC 4471886. PMID 26086668.
  17. ^ Cartwright, Julyan H. E.; Eguíluz, Víctor M.; Hernández-García, Emilio; Piro, Oreste (1999). "Dynamics of Elastic Excitable Media". International Journal of Bifurcation and Chaos. 09 (11): 2197–2202. arXiv:chao-dyn/9905035. Bibcode:1999IJBC....9.2197C. doi:10.1142/s0218127499001620. ISSN 0218-1274. S2CID 9120223.
  18. ^ Silvana S. S. Cardoso, Julyan H. E. Cartwright, Jitka Čejková, Leroy Cronin, Anne De Wit, Simone Giannerini, Dezső Horváth, Alírio Rodrigues, Michael J. Russell, C. Ignacio Sainz-Díaz, Ágota Tóth; Chemobrionics: From Self-Assembled Material Architectures to the Origin of Life. Artif Life 2020; 26 (3): 315–326. doi: https://doi.org/10.1162/artl_a_00323
  19. ^ Barge, Laura M.; Cardoso, Silvana S. S.; Cartwright, Julyan H. E.; Cooper, Geoffrey J. T.; Cronin, Leroy; De Wit, Anne; Doloboff, Ivria J.; Escribano, Bruno; Goldstein, Raymond E. (2015-08-26). "From Chemical Gardens to Chemobrionics". Chemical Reviews. 115 (16): 8652–8703. doi:10.1021/acs.chemrev.5b00014. hdl:20.500.11824/172. ISSN 0009-2665. PMID 26176351.
  20. ^ Cartwright J H E, B Escribano, D L González, C I Sainz-Díaz & I Tuval (2013). "Brinicles as a case of inverse chemical gardens". Langmuir. 29 (25): 7655–7660. arXiv:1304.1774. doi:10.1021/la4009703. PMID 23551166. S2CID 207727184.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. ^ Cartwright, Julyan H. E.; Russell, Michael J. (2019). "The origin of life: the submarine alkaline vent theory at 30". Interface Focus. 9 (6). doi:10.1098/rsfs.2019.0104. hdl:10261/205389. S2CID 204753957.
  22. ^ Jeroen Baas; Boyack, Kevin; Ioannidis, John P. A. (2021). "August 2021 data-update for "Updated science-wide author databases of standardized citation indicators"". 3. Elsevier BV. doi:10.17632/btchxktzyw.3. {{cite journal}}: Cite journal requires |journal= (help)
  23. ^ "La lista completa de los investigadores más destacados de la Universidad de Granada".
  24. ^ "Chemobrionics - COST".
  25. ^ "European Dynamics Days".
  26. ^ "Elements in Dynamical Systems".
  27. ^ "Recent research provides new data on chemical gardens, whose formation is a mystery for science".
  28. ^ "Philip Ball considers the vegetative soul of an inorganic woodland".
  29. ^ Ball, Philip (1999). "Pump up the bass". Nature. doi:10.1038/news990708-7.
  30. ^ "A pitch for decoding frequency more simply".
  31. ^ Wells, William A. (2004). "Tilt back to turn left". Journal of Cell Biology. 165 (4): 456. doi:10.1083/jcb1654rr1. PMC 2249968.
  32. ^ "Broken Symmetry". 11 September 2009.
  33. ^ "Scientists Crack the Mathematical Mystery of Stingless Bees' Spiral Honeycombs".
  34. ^ "Scientists Find These Stunning Spiral Beehives Have a Lot in Common With Crystals".
  35. ^ "Strange, spiral bee combs look like fantastical crystal palaces. Now we know why". Live Science. 22 July 2020.
  36. ^ "Mother-of-pearl From Shells Could Inspire Regeneration of Human Bones".
  37. ^ "Pearls and the Puzzle of How They Form Perfect Spheres".
  38. ^ "Pearly perfection".
  39. ^ "Micro-ratchet spins pearls with perfect symmetry".
  40. ^ "Researchers Try to Explain How Perfect Pearls Form".
  41. ^ "How pearls get their round shape".
  42. ^ Marlow, Jeffrey. "Swimming Beneath the Brinicles, in Antarctica". Wired.
  43. ^ "Ice tubes in polar seas -- 'brinicles' or 'sea stalactites' -- provide clues to origin of life".
  44. ^ "Brinicles and the Origin of Life".
  45. ^ "Self-Assembling Ice Membranes on Europa – Astrobiology".
  46. ^ "Crystals, Information And The Origin of Life".
  47. ^ Ball, Philip (2012). "Bringing crystals to life". Nature Materials. 11 (10): 840. doi:10.1038/nmat3437. PMID 23001232.
  48. ^ Buchanan, Mark (2012). "Instructions for assembly". Nature Physics. 8 (8): 577. Bibcode:2012NatPh...8..577B. doi:10.1038/nphys2393. S2CID 122568730.
  49. ^ Ball, Philip (2014). "Beyond the crystal". Nature Materials. 13 (11): 1003. doi:10.1038/nmat4122. PMID 25342529.
  50. ^ "When Good Waves Go Rogue". 25 June 2014.
  51. ^ "Recreating monster waves in art and science".
  52. ^ "Hokusai Under the Wave off Kanagawa".
  53. ^ "Der anstößige Superstar".
  54. ^ "Scoperta la più antica raffigurazione del nastro di Moebius".
  55. ^ "Escher, il nastro di Möbius e gli idiot savant: fin dove si può arrivare col pensiero?". 7 December 2021.
  56. ^ "3.5 percent of global methane deposits could be melted by 2100 due to climate change".
  57. ^ "Expertos internacionales debaten en Granada los últimos avances científicos relacionados con el origen de la vida". 12 March 2019.
  58. ^ "Search for origin of life reaches interstellar dust".