Kentaro Yano (mathematician)


Kentaro Yano (1 March 1912 in Tokyo, Japan – 25 December 1993) was a mathematician working on differential geometry[2] who introduced the Bochner–Yano theorem.

Kentaro Yano
(1912-03-01)March 1, 1912
DiedDecember 25, 1993(1993-12-25) (aged 81)
Alma materUniversity of Tokyo, Japan
Scientific career
FieldsDifferential geometry, Riemannian Geometry
InstitutionsUniversity of Tokyo, Tokyo Institute of Technology
Thesis[Sur la théorie des espaces à connexion conforme Les espaces à connexion projective et la géométrie projective des "paths"[1]] (1938)
Doctoral advisorElie Cartan
Doctoral studentsTadashi Nagano
Other notable studentsShoshichi Kobayashi

He also published a classical book about geometric objects (i.e., sections of natural fiber bundles) and Lie derivatives of these objects.


  • Les espaces à connexion projective et la géométrie projective des paths, Iasi, 1938
  • Geometry of Structural Forms (Japanese), 1947
  • Groups of Transformations in Generalized Spaces, Tokyo, Akademeia Press, 1949
  • with Salomon Bochner: Curvature and Betti Numbers, Princeton University Press, Annals of Mathematical Studies, 1953[3]
  • The Theory of Lie Derivatives and its Applications. North-Holland. 1957. ISBN 978-0-7204-2104-0. 2020 reprint
  • Differential geometry on complex and almost complex spaces, Macmillan, New York 1965
  • Integral formulas in Riemannian Geometry, Marcel Dekker, New York 1970
  • with Shigeru Ishihara: Tangent and cotangent bundles: differential geometry, New York, M. Dekker 1973
  • with Masahiro Kon: Anti-invariant submanifolds, Marcel Dekker, New York 1976[4]
  • Morio Obata (ed.): Selected papers of Kentaro Yano, North Holland 1982
  • with Masahiro Kon: CR Submanifolds of Kählerian and Sasakian Manifolds, Birkhäuser 1983[5] 2012 reprint
  • with Masahiro Kon: Structures on Manifolds, World Scientific 1984


  1. ^ Kentaro Yano at the Mathematics Genealogy Project
  2. ^ Suceavă, Bogdan D. (2021). "The Cartan connection: sketches for a portrait of Kentaro Yano". Creative Mathematics and Informatics. 29 (2): 237–242. doi:10.37193/cmi.2020.02.15.
  3. ^ Boothby, William B. (1954). "Review: Curvature and Betti numbers, by K. Yano and S. Bochner". Bull. Amer. Math. Soc. 60 (4): 404–405. doi:10.1090/s0002-9904-1954-09834-8.
  4. ^ Reilly, Robert C. (1979). "Review: Anti-invariant subspaces, by K. Yano and M. Kon". Bull. Amer. Math. Soc. 1 (4): 627–632. doi:10.1090/s0273-0979-1979-14642-1.
  5. ^ Chen, Bang-Yen (1983). "Review: CR submanifolds of Kaehlerian and Sasakian manifolds, by K. Yano and M. Kon". Bull. Amer. Math. Soc. (N.S.). 9 (3): 361–364. doi:10.1090/s0273-0979-1983-15209-6.