LOOP (programming language)

Summary

LOOP is a simple register language that precisely captures the primitive recursive functions.[1] The language is derived from the counter-machine model. Like the counter machines the LOOP language comprises a set of one or more unbounded registers, each of which can hold a single non-negative integer. A few arithmetic instructions (like 'CleaR', 'INCrement', 'DECrement', 'CoPY', ...) operate on the registers. The only control flow instruction is 'LOOP x DO ... END'. It causes the instructions within its scope to be repeated x times. (Changes of the content of register x during the execution of the loop do not affect the number of passes.)

History edit

The LOOP language was formulated in a 1967 paper by Albert R. Meyer and Dennis M. Ritchie.[2] They showed the correspondence between the LOOP language and primitive recursive functions.

The language also was the topic of the unpublished PhD thesis of Ritchie.[3][4]

It was also presented by Uwe Schöning, along with GOTO and WHILE.[5]

Design philosophy and features edit

In contrast to GOTO programs and WHILE programs, LOOP programs always terminate.[6] Therefore, the set of functions computable by LOOP-programs is a proper subset of computable functions (and thus a subset of the computable by WHILE and GOTO program functions).[7]

Meyer & Ritchie proved that each primitive recursive function is LOOP-computable and vice versa.[2][5]

An example of a total computable function that is not LOOP computable is the Ackermann function.[8]

Formal definition edit

Syntax edit

LOOP-programs consist of the symbols LOOP, DO, END, :=, + and ; as well as any number of variables and constants. LOOP-programs have the following syntax in modified Backus–Naur form:

 

Here,   are variable names and   are constants.

Semantics edit

If P is a LOOP program, P is equivalent to a function  . The variables   through   in a LOOP program correspond to the arguments of the function  , and are initialized before program execution with the appropriate values. All other variables are given the initial value zero. The variable   corresponds to the value that   takes when given the argument values from   through  .

A statement of the form

xi := 0

means the value of the variable   is set to 0.

A statement of the form

xi := xi + 1

means the value of the variable   is incremented by 1.

A statement of the form

P1; P2

represents the sequential execution of sub-programs   and  , in that order.

A statement of the form

LOOP x DO P END

means the repeated execution of the partial program   a total of   times, where the value that   has at the beginning of the execution of the statement is used. Even if   changes the value of  , it won't affect how many times   is executed in the loop. If   has the value zero, then   is not executed inside the LOOP statement. This allows for branches in LOOP programs, where the conditional execution of a partial program depends on whether a variable has value zero or one.

Creating "convenience instructions" edit

From the base syntax one create "convenience instructions". These will not be subroutines in the conventional sense but rather LOOP programs created from the base syntax and given a mnemonic. In a formal sense, to use these programs one needs to either (i) "expand" them into the code  – they will require the use of temporary or "auxiliary" variables so this must be taken into account, or (ii) design the syntax with the instructions 'built in'.

Example

The k-ary projection function   extracts the i-th coordinate from an ordered k-tuple.

In their seminal paper [2] Meyer & Ritchie made the assignment   a basic statement. As the example shows the assignment can be derived from the list of basic statements.

To create the   instruction use the block of code below.   =equiv

xj := 0;
LOOP xi DO
  xj := xj + 1
END

Again, all of this is for convenience only; none of this increases the model's intrinsic power.

Example Programs edit

Addition edit

Addition is recursively defined as:

 

Here, S should be read as "successor".

In the hyperoperater sequence it is the function  

  can be implemented by the LOOP program ADD( x1, x2)

LOOP x1 DO
  x0 := x0 + 1
END;
LOOP x2 DO
  x0 := x0 + 1
END

Multiplication edit

Multiplication is the hyperoperation function  

  can be implemented by the LOOP program MULT( x1, x2 )

x0 := 0;
LOOP x2 DO
  x0 := ADD( x1, x0)
END

The program uses the ADD() program as a "convenience instruction". Expanded, the MULT program is a LOOP-program with two nested LOOP instructions. ADD counts for one.

More hyperoperators edit

Given a LOOP program for a hyperoperation function  , one can construct a LOOP program for the next level

  for instance (which stands for exponentiation) can be implemented by the LOOP program POWER( x1, x2 )

x0 := 1;
LOOP x2 DO
  x0 := MULT( x1, x0 )
END

The exponentiation program, expanded, has three nested LOOP instructions.

Predecessor edit

The predecessor function is defined as

 .

This function can be computed by the following LOOP program, which sets the variable   to  .

/* precondition: x2 = 0 */
LOOP x1 DO
  x0 := x2;
  x2 := x2 + 1
END

Expanded, this is the program

/* precondition: x2 = 0 */
LOOP x1 DO
  x0 := 0;
  LOOP x2 DO
    x0 := x0 + 1
  END;
  x2 := x2 + 1
END

This program can be used as a subroutine in other LOOP programs. The LOOP syntax can be extended with the following statement, equivalent to calling the above as a subroutine:

x0 := x1 ∸ 1

Remark: Again one has to mind the side effects. The predecessor program changes the variable x2, which might be in use elsewhere. To expand the statement x0 := x1 ∸ 1, one could initialize the variables xn, xn+1 and xn+2 (for a big enough n) to 0, x1 and 0 respectively, run the code on these variables and copy the result (xn) to x0. A compiler can do this.

Cut-off subtraction edit

If in the 'addition' program above the second loop decrements x0 instead of incrementing, the program computes the difference (cut off at 0) of the variables   and  .

x0 := x1
LOOP x2 DO
  x0 := x0 ∸ 1
END

Like before we can extend the LOOP syntax with the statement:

x0 := x1 ∸ x2

If then else edit

An if-then-else statement with if x1 > x2 then P1 else P2:

xn1 := x1 ∸ x2;
xn2 := 0;
xn3 := 1;
LOOP xn1 DO
  xn2 := 1;
  xn3 := 0
END;
LOOP xn2 DO
  P1
END;
LOOP xn3 DO
  P2
END;

See also edit

Notes and references edit

  1. ^ Enderton 2012.
  2. ^ a b c Meyer & Ritchie 1967.
  3. ^ "Discovering Dennis Ritchie's Lost Dissertation". CHM. 2020-06-19. Retrieved 2020-07-14.
  4. ^ Program structure and computational complexity draft | 102790971 | Computer History Museum. 1967. Retrieved 2020-07-14. {{cite book}}: |website= ignored (help)
  5. ^ a b Schöning 2008, p. 105.
  6. ^ Schöning 2008, p. 93.
  7. ^ Schöning 2001, p. 122.
  8. ^ Schöning 2008, p. 112.

Bibliography edit

  • Axt, Paul (1966). "Iteration of relative primitive recursion". Mathematische Annalen. 167: 53–55. doi:10.1007/BF01361215. S2CID 119730846.
  • Axt, Paul (1970). "Iteration of primitive recursion". Journal of Symbolic Logic. 35 (3): 253–255. doi:10.1002/malq.19650110310.
  • Calude, Cristian (1988). Theories of Computational Complexity. Vol. 35. North Holland Publishing Company. ISBN 9780080867755. {{cite book}}: |journal= ignored (help)
  • Cherniavsky, John Charles (1976). "Simple Programs Realize Exactly Presburger Formulas". SIAM Journal on Computing. 5 (4): 666–677. doi:10.1137/0205045.
  • Cherniavsky, John Charles; Kamin, Samuel Noah (1979). "A Complete and Consistent Hoare Axiomatics for a Simple Programming Language". Association for Computing Machinery. 26 (1): 119–128. doi:10.1145/322108.322120. S2CID 13062959.
  • Constable, Robert L.; Borodin, Allan B (1972). "Subrecursive programming languages, part I: Efficiency and program structure". Journal of the ACM. 19 (3): 526–568. doi:10.1145/321707.321721. S2CID 42474303.
  • Crolard, Tristan; Lacas, Samuel; Valarcher, Pierre (2006). "On the expressive power of the loop language". Nordic Journal of Computing. 13: 46–57.
  • Crolard, Tristan; Polonowski, Emmanuel; Valarcher, Pierre (2009). "Extending the loop language with higher-order procedural variables" (PDF). ACM Transactions on Computational Logic. 10 (4): 1–37. doi:10.1145/1555746.1555750. S2CID 1367078.
  • Enderton, Herbert (2012). Computability Theory. Academic Press. doi:10.1145/1555746.1555750.
  • Fachini, Emanuela; Maggiolo-Schettini, Andrea (1979). "A hierarchy of primitive recursive sequence functions". R.A.I.R.O. - Informatique Théorique - Theoretical Informatics. 13 (1): 49–67. doi:10.1051/ita/1979130100491.
  • Fachini, Emanuela; Maggiolo-Schettini, Andrea (1982). "Comparing Hierarchies of Primitive Recursive Sequence Functions". Zeitschrift für mathematische Logik und Grundlagen der Mathematik. 28 (27–32): 431–445. doi:10.1002/malq.19820282705.
  • Goetze, Bernhard; Nehrlich, Werner (1980). "The Structure of Loop Programs and Subrecursive Hierarchies". Zeitschrift für mathematische Logik und Grundlagen der Mathematik. 26 (14–18): 255–278. doi:10.1002/malq.19800261407.
  • Ibarra, Oscar H.; Leininger, Brian S. (1981). "Characterizations of Presburger Functions". SIAM Journal on Computing. 10 (1): 22–39. doi:10.1137/0210003.
  • Ibarra, Oscar H.; Rosier, Louis E. (1983). "Simple Programming Languages and Restricted Classes of Turing Machines". Theoretical Computer Science. 26 (1–2): 197–220. doi:10.1016/0304-3975(83)90085-3.
  • Kfoury, A.J.; Moll, Robert N.; Arbib, Michael A. (1982). A Programming Approach to Computability. Springer, New York, NY. doi:10.1007/978-1-4612-5749-3. ISBN 978-1-4612-5751-6.
  • Machtey, Michael (1972). "Augmented loop languages and classes of computable functions". Journal of Computer and System Sciences. 6 (6): 603–624. doi:10.1016/S0022-0000(72)80032-1.
  • PlanetMath. "primitive recursive vector-valued function". Retrieved 2021-08-21.
  • Matos, Armando B. (2014-11-03). "Closed form of primitive recursive functions: from imperative programs to mathematical expressions to functional programs" (PDF). Retrieved 2021-08-20.
  • Matos, Armando B. (2015). "The efficiency of primitive recursive functions: A programmer's view". Theoretical Computer Science. 594: 65–81. doi:10.1016/j.tcs.2015.04.022.
  • Meyer, Albert R.; Ritchie, Dennis MacAlistair (1967). The complexity of loop programs. ACM '67: Proceedings of the 1967 22nd national conference. doi:10.1145/800196.806014.
  • Minsky, Marvin Lee (1967). Computation: finite and infinite machines. Prentice Hall. doi:10.1017/S0008439500029350. S2CID 227917578.
  • Ritchie, Dennis MacAlistair (1967). Program structure and computational complexity (draft) (PDF).
  • Ritchie, Robert Wells (November 1965). "Classes of recursive functions based on Ackermann's function". Pacific Journal of Mathematics. 15 (3): 1027–1044. doi:10.2140/pjm.1965.15.1027.
  • Schöning, Uwe (2001). Theoretische Informatik-kurz gefasst (4 ed.). London: Oxford University Press. ISBN 3-8274-1099-1.
  • Schöning, Uwe (2008). Theoretische Informatik-kurz gefasst (5 ed.). London: Oxford University Press. ISBN 978-3-8274-1824-1. DNB 986529222.
  • Tsichritzis, Dennis C (1970). "The Equivalence Problem of Simple Programs". Journal of the ACM. 17 (4): 729–738. doi:10.1145/321607.321621. S2CID 16066171.
  • Tsichritzis, Dennis C (1971). "A note on comparison of subrecursive hierarchies". Information Processing Letters. 1 (2): 42–44. doi:10.1016/0020-0190(71)90002-0.

External links edit

  • Loop, Goto & While
  • Mastering the Art of Loops in Programming: A Step-by-Step Tutorial

Mastering the Art of Loops in Programming: A Step-by-Step Tutorial edit