Landweber exact functor theorem


In mathematics, the Landweber exact functor theorem, named after Peter Landweber, is a theorem in algebraic topology. It is known that a complex orientation of a homology theory leads to a formal group law. The Landweber exact functor theorem (or LEFT for short) can be seen as a method to reverse this process: it constructs a homology theory out of a formal group law.


The coefficient ring of complex cobordism is  , where the degree of   is  . This is isomorphic to the graded Lazard ring  . This means that giving a formal group law F (of degree  ) over a graded ring   is equivalent to giving a graded ring morphism  . Multiplication by an integer   is defined inductively as a power series, by


Let now F be a formal group law over a ring  . Define for a topological space X


Here   gets its  -algebra structure via F. The question is: is E a homology theory? It is obviously a homotopy invariant functor, which fulfills excision. The problem is that tensoring in general does not preserve exact sequences. One could demand that   be flat over  , but that would be too strong in practice. Peter Landweber found another criterion:

Theorem (Landweber exact functor theorem)
For every prime p, there are elements   such that we have the following: Suppose that   is a graded  -module and the sequence   is regular for  , for every p and n. Then
is a homology theory on CW-complexes.

In particular, every formal group law F over a ring   yields a module over   since we get via F a ring morphism  .


  • There is also a version for Brown–Peterson cohomology BP. The spectrum BP is a direct summand of   with coefficients  . The statement of the LEFT stays true if one fixes a prime p and substitutes BP for MU.
  • The classical proof of the LEFT uses the Landweber–Morava invariant ideal theorem: the only prime ideals of   which are invariant under coaction of   are the  . This allows to check flatness only against the   (see Landweber, 1976).
  • The LEFT can be strengthened as follows: let   be the (homotopy) category of Landweber exact  -modules and   the category of MU-module spectra M such that   is Landweber exact. Then the functor   is an equivalence of categories. The inverse functor (given by the LEFT) takes  -algebras to (homotopy) MU-algebra spectra (see Hovey, Strickland, 1999, Thm 2.7).


The archetypical and first known (non-trivial) example is complex K-theory K. Complex K-theory is complex oriented and has as formal group law  . The corresponding morphism   is also known as the Todd genus. We have then an isomorphism


called the Conner–Floyd isomorphism.

While complex K-theory was constructed before by geometric means, many homology theories were first constructed via the Landweber exact functor theorem. This includes elliptic homology, the Johnson–Wilson theories   and the Lubin–Tate spectra  .

While homology with rational coefficients   is Landweber exact, homology with integer coefficients   is not Landweber exact. Furthermore, Morava K-theory K(n) is not Landweber exact.

Modern reformulationEdit

A module M over   is the same as a quasi-coherent sheaf   over  , where L is the Lazard ring. If  , then M has the extra datum of a   coaction. A coaction on the ring level corresponds to that   is an equivariant sheaf with respect to an action of an affine group scheme G. It is a theorem of Quillen that   and assigns to every ring R the group of power series


It acts on the set of formal group laws   via


These are just the coordinate changes of formal group laws. Therefore, one can identify the stack quotient   with the stack of (1-dimensional) formal groups   and   defines a quasi-coherent sheaf over this stack. Now it is quite easy to see that it suffices that M defines a quasi-coherent sheaf   which is flat over   in order that   is a homology theory. The Landweber exactness theorem can then be interpreted as a flatness criterion for   (see Lurie 2010).

Refinements to -ring spectraEdit

While the LEFT is known to produce (homotopy) ring spectra out of  , it is a much more delicate question to understand when these spectra are actually  -ring spectra. As of 2010, the best progress was made by Jacob Lurie. If X is an algebraic stack and   a flat map of stacks, the discussion above shows that we get a presheaf of (homotopy) ring spectra on X. If this map factors over   (the stack of 1-dimensional p-divisible groups of height n) and the map   is etale, then this presheaf can be refined to a sheaf of  -ring spectra (see Goerss). This theorem is important for the construction of topological modular forms.


  • Goerss, Paul. "Realizing families of Landweber exact homology theories" (PDF).
  • Hovey, Mark; Strickland, Neil P. (1999), "Morava K-theories and localisation", Memoirs of the American Mathematical Society, 139 (666), doi:10.1090/memo/0666, MR 1601906, archived from the original on 2004-12-07
  • Landweber, Peter S. (1976). "Homological properties of comodules over   and  ". American Journal of Mathematics. 98 (3): 591–610. doi:10.2307/2373808. JSTOR 2373808..
  • Lurie, Jacob (2010). "Chromatic Homotopy Theory. Lecture Notes".