Las Juntas Formation

Summary

The Las Juntas Formation or Las Juntas Sandstone (Spanish: (Formación) Areniscas de Las Juntas, Kiaj, Kialj, K1j) is a geological formation of the Altiplano Cundiboyacense and Tenza Valley, Eastern Ranges of the Colombian Andes. The Las Juntas Formation is found in the departments Cundinamarca, Boyacá and Casanare. The predominantly sandstone formation dates to the Early Cretaceous period; Hauterivian epoch, and has a maximum thickness of 910 metres (2,990 ft).

Las Juntas Formation
Stratigraphic range: Hauterivian
~132–130 Ma
TypeGeological formation
Unit ofCáqueza Group
Sub-unitsArenisca de Almeida Mb.
Lutitas Intermedias Mb.
Arenisca de El Volador Mb.
UnderliesFómeque Fm., Apón Fm.
OverliesMacanal Formation
Thicknessup to 910 m (2,990 ft)
Lithology
PrimarySandstone
OtherShale
Location
Coordinates5°00′49″N 73°27′27″W / 5.01361°N 73.45750°W / 5.01361; -73.45750
RegionAltiplano Cundiboyacense & Tenza Valley
 Eastern Ranges
  Andes
Country Colombia
Type section
Named forCerro Las Juntas
Named byRodríguez & Ulloa
LocationGuateque
Year defined1979
Coordinates5°00′49″N 73°27′27″W / 5.01361°N 73.45750°W / 5.01361; -73.45750
RegionBoyacá
Country Colombia

Etymology edit

The formation was defined and named in 1979 by Rodríguez and Ulloa after Cerro Las Juntas, Guateque, Tenza Valley, Boyacá.[1][2]

Description edit

Lithologies edit

The Las Juntas Formation has a maximum thickness of 910 metres (2,990 ft) and is characterised by a sequence of sandstones with interbedded shales.[1]

Stratigraphy and depositional environment edit

The Las Juntas Formation, the uppermost unit of the Cáqueza Group, overlies the Macanal Formation and is overlain by the Fómeque Formation and the Apón Formation in the Sierra Nevada del Cocuy.[3] The formation is subdivided into three members, from old to younger; Arenisca de El Volador, Lutitas Intermedias and Arenisca de Almeida. The age has been estimated to be Hauterivian. The formation has been deposited in a near shore deltaic environment,[1][2] with as provenance areas the Santander High and the Guiana Shield.[4] The formation represents a regressive sequence in the present-day Eastern Ranges, as the Rosablanca Formation in the Middle Magdalena Valley.[5]

Outcrops edit

 
 
class=notpageimage|
Type locality of the Las Juntas Formation in the Tenza Valley east of the Altiplano Cundiboyacense

The Las Juntas Formation is apart from its type locality east of Guateque, found in Chingaza National Park,[1] in the El Cochal Synclinal east of the Ocetá Páramo,[6] between Lake Tota and Labranzagrande,[7] other parts of the Tenza Valley such as close to Macanal and Almeida.[8]

The Támara Fault thrusts the Las Juntas Formation southeastward on top of the Tertiary San Fernando and Diablo Formations,[9] and the Chámeza Fault thrusts the older Macanal Formation on top of the Las Juntas Formation around Chámeza, Casanare.[10]

Regional correlations edit


Stratigraphy of the Llanos Basin and surrounding provinces
Ma Age Paleomap Regional events Catatumbo Cordillera proximal Llanos distal Llanos Putumayo VSM Environments Maximum thickness Petroleum geology Notes
0.01 Holocene
 
Holocene volcanism
Seismic activity
alluvium Overburden
1 Pleistocene
 
Pleistocene volcanism
Andean orogeny 3
Glaciations
Guayabo Soatá
Sabana
Necesidad Guayabo Gigante
Neiva
Alluvial to fluvial (Guayabo) 550 m (1,800 ft)
(Guayabo)
[11][12][13][14]
2.6 Pliocene
 
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3 Messinian Andean orogeny 3
Foreland
Marichuela Caimán Honda [13][15]
13.5 Langhian Regional flooding León hiatus Caja León Lacustrine (León) 400 m (1,300 ft)
(León)
Seal [14][16]
16.2 Burdigalian Miocene inundations
Andean orogeny 2
C1 Carbonera C1 Ospina Proximal fluvio-deltaic (C1) 850 m (2,790 ft)
(Carbonera)
Reservoir [15][14]
17.3 C2 Carbonera C2 Distal lacustrine-deltaic (C2) Seal
19 C3 Carbonera C3 Proximal fluvio-deltaic (C3) Reservoir
21 Early Miocene Pebas wetlands C4 Carbonera C4 Barzalosa Distal fluvio-deltaic (C4) Seal
23 Late Oligocene
 
Andean orogeny 1
Foredeep
C5 Carbonera C5 Orito Proximal fluvio-deltaic (C5) Reservoir [12][15]
25 C6 Carbonera C6 Distal fluvio-lacustrine (C6) Seal
28 Early Oligocene C7 C7 Pepino Gualanday Proximal deltaic-marine (C7) Reservoir [12][15][17]
32 Oligo-Eocene C8 Usme C8 onlap Marine-deltaic (C8) Seal
Source
[17]
35 Late Eocene
 
Mirador Mirador Coastal (Mirador) 240 m (790 ft)
(Mirador)
Reservoir [14][18]
40 Middle Eocene Regadera hiatus
45
50 Early Eocene
 
Socha Los Cuervos Deltaic (Los Cuervos) 260 m (850 ft)
(Los Cuervos)
Seal
Source
[14][18]
55 Late Paleocene PETM
2000 ppm CO2
Los Cuervos Bogotá Gualanday
60 Early Paleocene SALMA Barco Guaduas Barco Rumiyaco Fluvial (Barco) 225 m (738 ft)
(Barco)
Reservoir [11][12][15][14][19]
65 Maastrichtian
 
KT extinction Catatumbo Guadalupe Monserrate Deltaic-fluvial (Guadalupe) 750 m (2,460 ft)
(Guadalupe)
Reservoir [11][14]
72 Campanian End of rifting Colón-Mito Juan [14][20]
83 Santonian Villeta/Güagüaquí
86 Coniacian
89 Turonian Cenomanian-Turonian anoxic event La Luna Chipaque Gachetá hiatus Restricted marine (all) 500 m (1,600 ft)
(Gachetá)
Source [11][14][21]
93 Cenomanian
 
Rift 2
100 Albian Une Une Caballos Deltaic (Une) 500 m (1,600 ft)
(Une)
Reservoir [15][21]
113 Aptian
 
Capacho Fómeque Motema Yaví Open marine (Fómeque) 800 m (2,600 ft)
(Fómeque)
Source (Fóm) [12][14][22]
125 Barremian High biodiversity Aguardiente Paja Shallow to open marine (Paja) 940 m (3,080 ft)
(Paja)
Reservoir [11]
129 Hauterivian
 
Rift 1 Tibú-
Mercedes
Las Juntas hiatus Deltaic (Las Juntas) 910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun) [11]
133 Valanginian Río Negro Cáqueza
Macanal
Rosablanca
Restricted marine (Macanal) 2,935 m (9,629 ft)
(Macanal)
Source (Mac) [12][23]
140 Berriasian Girón
145 Tithonian Break-up of Pangea Jordán Arcabuco Buenavista
Batá
Saldaña Alluvial, fluvial (Buenavista) 110 m (360 ft)
(Buenavista)
"Jurassic" [15][24]
150 Early-Mid Jurassic
 
Passive margin 2 La Quinta
Montebel

Noreán
hiatus Coastal tuff (La Quinta) 100 m (330 ft)
(La Quinta)
[25]
201 Late Triassic
 
Mucuchachi Payandé [15]
235 Early Triassic
 
Pangea hiatus "Paleozoic"
250 Permian
 
300 Late Carboniferous
 
Famatinian orogeny Cerro Neiva
()
[26]
340 Early Carboniferous Fossil fish
Romer's gap
Cuche
(355-385)
Farallones
()
Deltaic, estuarine (Cuche) 900 m (3,000 ft)
(Cuche)
360 Late Devonian
 
Passive margin 1 Río Cachirí
(360-419)
Ambicá
()
Alluvial-fluvial-reef (Farallones) 2,400 m (7,900 ft)
(Farallones)
[23][27][28][29][30]
390 Early Devonian
 
High biodiversity Floresta
(387-400)
El Tíbet
Shallow marine (Floresta) 600 m (2,000 ft)
(Floresta)
410 Late Silurian Silurian mystery
425 Early Silurian hiatus
440 Late Ordovician
 
Rich fauna in Bolivia San Pedro
(450-490)
Duda
()
470 Early Ordovician First fossils Busbanzá
(>470±22)
Chuscales
Otengá
Guape
()
Río Nevado
()
Hígado
()
Agua Blanca
Venado
(470-475)
[31][32][33]
488 Late Cambrian
 
Regional intrusions Chicamocha
(490-515)
Quetame
()
Ariarí
()
SJ del Guaviare
(490-590)
San Isidro
()
[34][35]
515 Early Cambrian Cambrian explosion [33][36]
542 Ediacaran
 
Break-up of Rodinia pre-Quetame post-Parguaza El Barro
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement [37][38]
600 Neoproterozoic Cariri Velhos orogeny Bucaramanga
(600-1400)
pre-Guaviare [34]
800
 
Snowball Earth [39]
1000 Mesoproterozoic
 
Sunsás orogeny Ariarí
(1000)
La Urraca
(1030-1100)
[40][41][42][43]
1300 Rondônia-Juruá orogeny pre-Ariarí Parguaza
(1300-1400)
Garzón
(1180-1550)
[44]
1400
 
pre-Bucaramanga [45]
1600 Paleoproterozoic Maimachi
(1500-1700)
pre-Garzón [46]
1800
 
Tapajós orogeny Mitú
(1800)
[44][46]
1950 Transamazonic orogeny pre-Mitú [44]
2200 Columbia
2530 Archean
 
Carajas-Imataca orogeny [44]
3100 Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]


See also edit

  Geology of the Eastern Hills
  Geology of the Ocetá Páramo
  Geology of the Altiplano Cundiboyacense

Notes edit

  1. ^ based on Duarte et al. (2019)[47], García González et al. (2009),[48] and geological report of Villavicencio[49]
  2. ^ based on Duarte et al. (2019)[47] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[50]

References edit

  1. ^ a b c d Acosta & Ulloa, 2002, p.52
  2. ^ a b Rodríguez & Solano, 2000, p.47
  3. ^ Villamil, 2012, p.168
  4. ^ Villamil, 2012, p.165
  5. ^ Villamil, 2012, p.166
  6. ^ Plancha 172, 1998
  7. ^ Plancha 192, 1998
  8. ^ Plancha 210, 2010
  9. ^ Plancha 193, 1992
  10. ^ Plancha 211, 2009
  11. ^ a b c d e f García González et al., 2009, p.27
  12. ^ a b c d e f García González et al., 2009, p.50
  13. ^ a b García González et al., 2009, p.85
  14. ^ a b c d e f g h i j Barrero et al., 2007, p.60
  15. ^ a b c d e f g h Barrero et al., 2007, p.58
  16. ^ Plancha 111, 2001, p.29
  17. ^ a b Plancha 177, 2015, p.39
  18. ^ a b Plancha 111, 2001, p.26
  19. ^ Plancha 111, 2001, p.24
  20. ^ Plancha 111, 2001, p.23
  21. ^ a b Pulido & Gómez, 2001, p.32
  22. ^ Pulido & Gómez, 2001, p.30
  23. ^ a b Pulido & Gómez, 2001, pp.21-26
  24. ^ Pulido & Gómez, 2001, p.28
  25. ^ Correa Martínez et al., 2019, p.49
  26. ^ Plancha 303, 2002, p.27
  27. ^ Terraza et al., 2008, p.22
  28. ^ Plancha 229, 2015, pp.46-55
  29. ^ Plancha 303, 2002, p.26
  30. ^ Moreno Sánchez et al., 2009, p.53
  31. ^ Mantilla Figueroa et al., 2015, p.43
  32. ^ Manosalva Sánchez et al., 2017, p.84
  33. ^ a b Plancha 303, 2002, p.24
  34. ^ a b Mantilla Figueroa et al., 2015, p.42
  35. ^ Arango Mejía et al., 2012, p.25
  36. ^ Plancha 350, 2011, p.49
  37. ^ Pulido & Gómez, 2001, pp.17-21
  38. ^ Plancha 111, 2001, p.13
  39. ^ Plancha 303, 2002, p.23
  40. ^ Plancha 348, 2015, p.38
  41. ^ Planchas 367-414, 2003, p.35
  42. ^ Toro Toro et al., 2014, p.22
  43. ^ Plancha 303, 2002, p.21
  44. ^ a b c d Bonilla et al., 2016, p.19
  45. ^ Gómez Tapias et al., 2015, p.209
  46. ^ a b Bonilla et al., 2016, p.22
  47. ^ a b Duarte et al., 2019
  48. ^ García González et al., 2009
  49. ^ Pulido & Gómez, 2001
  50. ^ García González et al., 2009, p.60

Bibliography edit

  • Acosta Garay, Jorge E., and Carlos E. Ulloa Melo. 2002. Mapa Geológico del Departamento de Cundinamarca - 1:250,000 - Memoria explicativa, 1–108. INGEOMINAS. Accessed 2017-04-26.
  • Rodríguez Parra, Antonio José, and Orlando Solano Silva. 2000. Mapa Geológico del Departamento de Boyacá - 1:250,000 - Memoria explicativa, 1–120. INGEOMINAS.
  • Villamil, Tomas. 2012. Chronology Relative Sea Level History and a New Sequence Stratigraphic Model for Basinal Cretaceous Facies of Colombia, 161–216. Society for Sedimentary Geology (SEPM).

Maps edit

  • Ulloa, Carlos E.; Álvaro Guerra, and Ricardo Escovar. 1998. Plancha 172 - Paz de Río - 1:100,000, 1. INGEOMINAS. Accessed 2017-06-06.
  • Ulloa, Carlos E.; Erasmo Rodríguez, and Ricardo Escovar. 1998. Plancha 192 - Laguna de Tota - 1:100,000, 1. INGEOMINAS. Accessed 2017-06-06.
  • Renzoni, Giancarlo. 1992. Plancha 193 - Yopal - 1:100,000, 1. INGEOMINAS. Accessed 2017-06-06.
  • Terraza, Roberto; Giovanni Moreno; José A. Buitrago; Adrián Pérez, and Diana María Montoya. 2010. Plancha 210 - Guateque - 1:100,000, 1. INGEOMINAS. Accessed 2017-06-06.
  • Ulloa, Carlos, and Erasmo Rodríguez. 2009. Plancha 211 - Tauramena - 1:100,000, 1. INGEOMINAS. Accessed 2017-06-06.
  • Buitrago, José Alberto; Roberto Terraza M., and Fernando Etayo. 1998. Plancha 228 - Santafé de Bogotá Noreste - 1:100,000, 1. INGEOMINAS. Accessed 2017-06-06.

External links edit

  • Gómez, J.; N.E. Montes; Á. Nivia, and H. Diederix. 2015. Plancha 5-09 del Atlas Geológico de Colombia 2015 – escala 1:500,000, 1. Servicio Geológico Colombiano. Accessed 2017-03-16.