Learning vector quantization

Summary

In computer science, learning vector quantization (LVQ) is a prototype-based supervised classification algorithm. LVQ is the supervised counterpart of vector quantization systems.

Overview edit

LVQ can be understood as a special case of an artificial neural network, more precisely, it applies a winner-take-all Hebbian learning-based approach. It is a precursor to self-organizing maps (SOM) and related to neural gas and the k-nearest neighbor algorithm (k-NN). LVQ was invented by Teuvo Kohonen.[1]

An LVQ system is represented by prototypes   which are defined in the feature space of observed data. In winner-take-all training algorithms one determines, for each data point, the prototype which is closest to the input according to a given distance measure. The position of this so-called winner prototype is then adapted, i.e. the winner is moved closer if it correctly classifies the data point or moved away if it classifies the data point incorrectly.

An advantage of LVQ is that it creates prototypes that are easy to interpret for experts in the respective application domain.[2] LVQ systems can be applied to multi-class classification problems in a natural way.

A key issue in LVQ is the choice of an appropriate measure of distance or similarity for training and classification. Recently, techniques have been developed which adapt a parameterized distance measure in the course of training the system, see e.g. (Schneider, Biehl, and Hammer, 2009)[3] and references therein.

LVQ can be a source of great help in classifying text documents.[citation needed]

Algorithm edit

Below follows an informal description.
The algorithm consists of three basic steps. The algorithm's input is:

  • how many neurons the system will have   (in the simplest case it is equal to the number of classes)
  • what weight each neuron has   for  
  • the corresponding label   to each neuron  
  • how fast the neurons are learning  
  • and an input list   containing all the vectors of which the labels are known already (training set).

The algorithm's flow is:

  1. For next input   (with label  ) in   find the closest neuron  ,
    i.e.  , where   is the metric used ( Euclidean, etc. ).
  2. Update  . A better explanation is get   closer to the input  , if   and   belong to the same label and get them further apart if they don't.
      if   (closer together)
    or   if   (further apart).
  3. While there are vectors left in   go to step 1, else terminate.

Note:   and   are vectors in feature space.

References edit

  1. ^ T. Kohonen. Self-Organizing Maps. Springer, Berlin, 1997.
  2. ^ T. Kohonen (1995), "Learning vector quantization", in M.A. Arbib (ed.), The Handbook of Brain Theory and Neural Networks, Cambridge, MA: MIT Press, pp. 537–540
  3. ^ P. Schneider; B. Hammer; M. Biehl (2009). "Adaptive Relevance Matrices in Learning Vector Quantization". Neural Computation. 21 (10): 3532–3561. CiteSeerX 10.1.1.216.1183. doi:10.1162/neco.2009.10-08-892. PMID 19635012. S2CID 17306078.

Further reading edit

  • Self-Organizing Maps and Learning Vector Quantization for Feature Sequences, Somervuo and Kohonen. 2004 (pdf)

External links edit

  • lvq_pak official release (1996) by Kohonen and his team